МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» Институт естественных и точных наук Факультет Химический Кафедра Теоретической и прикладной химии

РАБОТА ПРОВЕРЕНА Рецензент, к.х.н., доцент ______В.А. Сычёв «____» _____20___г. ДОПУСТИТЬ К ЗАЩИТЕ Заведующий кафедрой, д.х.н., проф. _____О.К. Шарутина «___» _____20___г.

Влияние природы растворителя на дизайн палладий-,галогенсодержащих анионов

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА ЮУрГУ – 04.04.01. 2017. 133-748. ВКР

Руководитель, к.х.н.,доцент

____/ В.С. Сенчурин/

«____»____20___г.

Автор студент группы ET-241 ____/И.А. Ильченко/ «____» ____20___г.

Hop	эмоконтро	лер, д.х.н., про	эф.
		<u> </u>	4м/
«	»	20	_ Г.

Челябинск 2017

ΡΕΦΕΡΑΤ

Ильченко И.А. Влияние природы растворителя на дизайн палладий-,галогенсодержащих анионов – Челябинск: ЮУрГУ, ЕТ - 241, 2017. – 61 с., 29 ил., 16 табл., библиогр. список – 43 наим., 2 прил.

Дибромид палладия, бромистоводородная кислота, тетрабромопалладат(II) трифенил(циклопропил)фосфония, тетрабромопалладат(II) триэтилен-*бис*-трифенилфосфония, гексабромодипалладат(II)

трифенил(циклопропил)фосфония, сольват гексабромодипалладат(II) триэтилен*бис*-трифенилфосфония, трибромо(диметилсульфоксидо)палладат(II) трифенил(циклопропил)фосфония, сольват гексабромодипалладат(II) трифенил(циклопропил)фосфония, сольват

трибромо(диметилсульфоксидо)палладат 1,2-винилен-*бис*-трифенилфосфония, синтез, рентгеноструктурный анализ, строение.

Объектами исследования являются комплексы с моноядерными анионами типа: [PdBr₄]²⁻ и [PdBr₃(R₂S=O-S)]⁻, R=Me, Et и комплексы с биядерными анионами [Pd₂Br₆]²⁻, полученные при взаимодействии тетрабромопалладийводородной кислоты с бромидами трифенилорганилфосфония с последующей перекристаллизацией из различных растворителей.

Цель работы – синтез ионных бромосодержащих комплексов палладия(II) с фосфониевыми катионами, изучение влияния растворителя на структуру аниона, идентификация полученных соединений методами рентгеноструктурного анализа (РСА) и ИК-спектроскопии.

Для достижения цели НИР решены следующие задачи:

- проведен литературный обзор по проблеме исследования;

– проведён синтез бромосодержащих комплексов палладия(II) с фосфониевыми катионами;

– проведена перекристаллизация полученных соединений из различных растворителей;

- изучены особенности строения полученных комплексов;

- установлены структуры 9 соединений методом РСА.

Область применения – полученные данные могут применяться для дальнейшего изучения реакционной способности и практического применения синтезированных комплексов.

оглавление

ВВЕДЕНИЕ	.7
ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР	.9
1.1 Методы синтеза и особенности строения аммониевых, фосфониевь	JX
и стибониевых комплексов палладия с моно- и биядерными бромосодержащим	ИИ
анионами	9
1.1.1 Ионные комплексы палладия с моноядерными анионами [PdBr ₄] ²⁻	.9
1.1.2 Ионные комплексы палладия с моноядерными галогенсодержащим	1И
анионами типа [PdHal ₃ L] ⁻ , где L – нейтральная молекула1	4
1.1.3. Ионные комплексы палладия с моноядерными хлорсодержащим	1И
анионами типа [PdCl ₃ (DMSO)] ⁻ 1	6
1.1.4. Комплексы палладия с моноядерными галогенсодержащими анионам	1И
типа [PdHal ₃ (Et ₂ SO)] ⁻	20
1.1.5. Ионные комплексы палладия с биядерными галогенсодержащим	1И
анионами типа [Pd ₂ Hal ₆] ^{2–} 2	21
ГЛАВА 2 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ2	27
ГЛАВА З ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	39
ЗАКЛЮЧЕНИЕ	42
БИБЛИОГРАФИЧЕСКИЙ СПИСОК4	13
ABSTRACT4	-7
ПРИЛОЖЕНИЯ4	18
ПРИЛОЖЕНИЕ А. Данные рентгеноструктурного анализа4	18
ПРИЛОЖЕНИЕ Б. ИК-спектры полученных комплексов5	57

введение

Комплексы палладия находят применение В качестве катализаторов химических процессов. В то же время достаточно хорошо изученными являются разнообразными комплексы азотсодержащими ионные с катионами. Бромосодержащие комплексы палладия с фосфониевыми катионами практически не изучались. Поэтому основными целями дипломной работы были обозначены синтез новых ионных бромосодержащих комплексов палладия(II) и установление факторов влияющих на дизайн анионов.

Для достижения поставленных целей необходимо было решить следующие задачи:

1) проанализировать научные публикации, посвященные проблеме исследования;

2) провести реакции бромида трифенил(циклопропил)фосфония, дибромида триметилен-*бис*-трифенилфосфония, бромида трифенил(циклогексил)фосфония, дибромида 1,2-винилен-*бис*-трифенилфосфония с бромидом палладия(II) в избытке бромоводородной кислоты;

3) провести перекристаллизацию полученных комплексов из ацетонитрила, диметилформамида, диметилсульфоксида и диэтилсульфоксида;

4) установить структуры синтезированных соединений методами рентгеноструктурного анализа и ИК-спектроскопии.

Научная новизна и практическая значимость работы.

1) Впервые получены комплексы палладия с фосфониевыми катионами и анионами различного строения: [PdBr₄]²⁻, [Pd₂Br₆]²⁻ и [PdBr₃(R₂S=O-S)]⁻, R=Me, Et.

На примере фосфониевых бромосодержащих комплексов палладия изучено растворителей (воды, ацетонитрила, диметилформамида, влияние диметилсульфоксида и диэтилсульфоксида) на структуру аниона. Установлено, что перекристаллизация из ацетонитрила не приводит к изменению структуры аниона. При перекристаллизация ИЗ диметилформамида в растворе устанавливается динамическое равновесие между моноядерной и биядерной формами палладиевых комплексов. Перекристаллизация из диметилсульфоксида и диэтилсульфоксида сопровождается реакцией лигандного обмена аниона брома на молекулу растворителя.

Объем и структура работы. Дипломная работа изложена на 61 страницах, литературного обсуждения введения. обзора. результатов, состоит ИЗ экспериментальной части, заключения, библиографического списка И приложений. Библиографический список включает 43 ссылки на работы отечественных и зарубежных авторов.

Литературный обзор посвящен рассмотрению основных методов синтеза и особенностей строения ионных галогенсодержащих комплексов палладия(II) с аммониевыми, фосфониевыми и стибониевыми катионами.

В главе обсуждения результатов приведены реакции образования комплексов, проведён анализ данных рентгеноструктурных исследований полученных соединений.

В экспериментальной части описаны подробные методики реакций бромидов тетраорганилфосфония с бромидом палладия(II) в присутствии бромоводородной кислоты, а также физико-химические характеристики полученных соединений.

По результатам экспериментальной работы опубликованы три статьи:

«Синтез и строение комплексов палладия: $[Ph_3(cyclo-C_3H_5)P]^+_2[PdBr_4]^{2-}$, $[Ph_3(cyclo-C_3H_5)P]^+_2[Pd_2Br_6]^{2-}$ $[Ph_3(cyclo-C_3H_5)P]^+[PdBr_3(DMSO)]^- B$ журнале «Координационная химия»; «Синтез И строение комплекса палладия $[Ph_3PCH=CHPPh_3]^{2+}[PdBr_3(dmso)]^{-}$ » в журнале «Вестник ЮУрГУ. Серия Химия»; комплексов палладия «Синтез строение $[Ph_3P(CH_2)_3PPh_3][PdBr_4],$ И $[Ph_3P(CH_2)_3PPh_3][Pd_2Br_6] \cdot DMF$ и $[Ph_3P(CH_2)_3PPh_3][PdBr_3(DMSO-S)]_2$ в журнале «Обшей химии».

ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР

В литературном обзоре рассмотрены основные методы синтеза и особенности строения ионных галогенсодержащих комплексов палладия(II) с аммониевыми, фосфониевыми и стибониевыми катионами. Все рассматриваемые комплексы мы классифицировали в зависимости от строения аниона на моноядерные типа $[PdBr_4]^{2-}$, $[PdHal_3L]^-$, где L – монодентантный лиганд или молекула растворителя и биядерные типа $[Pd_2Hal_6]^{2-}$.

Основными методами синтеза моно- и биядерных галогенсодержащих комплексов палладия с анионом [PdHal₄]²⁻ и [Pd₂Hal₆]²⁻ являются взаимодействие соответствующего галогенида палладия(II) (амином). с аммониевыми фосфониевыми стибониевыми высокой ИЛИ солями В растворителе с растворяющей способностью, типа диметилсульфоксида, либо в присутствии кислоты. В свою очередь моноядерные анионы [PdHal₄]²⁻ способны вступать в реакцию лигандного обмена с разнообразными реагентами или молекулами растворителя сопровождающуюся замещением галогенид аниона нейтральной молекулой и образованием однозарядных анионов типа $[PdHal_3L]^-$.

1.1 Методы синтеза и особенности строения аммониевых, фосфониевых и стибониевых комплексов палладия с моно- и биядерными бромосодержащими анионами

1.1.1 Ионные комплексы палладия с моноядерными анионами [PdBr₄]²⁻

В поисковых базах Science Finder [1] и The Cambridge Crystallographic Data Centre (CCDC) [2] приводятся данные о 35 комплексах палладия с моноядерным анионом $[PdBr_4]^{2-}$.

Взаимодействием бромида палладия(II) с теофиллином в присутствии бромистоводородной кислоты Salas впервые синтезировал моноядерный комплекс, показанный на рисунке 1, с анионом [PdBr₄]²⁻ по схеме 1.1 [3].

Схема 1.1

Рисунок 1.1 – Строение комплекса [RH]⁺₂[PdBr₄]^{2–}(RH – протонированный теофиллин)

Ряд алкилпиридиниевых комплексов общей формулы $[Py(CH_2)_nPy]_2[PdBr_4]$ (где n = 12, 14, 16, 18) получены с высокими выходами Neve взаимодействием бромида палладия(II) с N-алкилпиридинийбромидами в ацетонитриле (схема 1.2)

n = 12, 14, 16, 18.

Схема 1.2

Структура двух комплексов установлена методом РСА [4].

Провели аналогичную реакцию (схема 1.3) с участием 6-бромгексановой кислоты:

Схема 1.3

Выход палладиевого комплекса [C₅H₅N(CH₂)₅COOH]₂[PdBr₄], также охарактеризованного методом PCA, составил 93 % [5].

В реакции бромида палладия с аминами (схема 1.4) в качестве донора протонов Гасановым была использована муравьиная кислота [6]:

Схема 1.4

Взаимодействием водного раствора *цис, транс*-1,3,5триаминоциклогексана·3HBr с бромидом палладия(II) был получен [Pd(LH)Br₂]₂[PdBr₄] (где L – *цис, транс*-1,3,5-триаминоциклогексан). Выход продукта составил 40 %. Структура комплекса установлена на основе данных PCA, ИК- и ЯМР-спектроскопии [7].

Chong-Min Zhong синтезировал тетрабромопалладат(II) *бис*-(1-н-бутил-3-метилимидазолия) реакцией бромида *бис*-(1-н-бутил-3-метилимидазола) с бромидом палладия в ацетонитриле (схема 1.5) [8].

Схема 1.5

Tusek-Bozic осуществил реакцию моноэтил 8-хинолилметилфосфоната натрия с бромидом палладия(II) растворенном в бромоводородной кислоте (схема 1.6).

Схема 1.6

Выход продукта составил 80 %. Комплекс охарактеризован методом ¹Н ЯМР-спектроскопии [9].

Barrios-Landeros получил тетрабромопалладат(II) *трис-трет*-бутилфосфония (схема 1.7) взаимодействием бромида *трис-трет*-бутилфосфония с бромидом палладия(II) в смеси тетрагидрофуран/ацетонитрил при комнатной температуре:

2 [HP*tret*-Bu₃]Br + PdBr₂
$$\xrightarrow{\text{THF}}$$
 [HP*tret*-Bu₃]₂[PdBr₄]

Схема 1.7

Выход продукта составил 87 %. Структура охарактеризована с помощью ¹Н ЯМР-спектроскопии [10].

Mantas-Oktem установил, что под действием морфолина биядерный комплекс палладия трансформируется в моноядерный по схеме 1.8.

Схема 1.8

Выход продукта реакции составил 92 %, структура доказана методом РСА [11].

Используя качестве исходного палладийсодержащего В реагента бис-4-цианофенилдибромидпалладия $[PdBr_2(C_6H_5CN)_2]$ взаимодействием с 1.5-бис-(1-(4-метоксифенил)имидазол-1-ил)пентана Trivedi дибромидом реакцию лигандного обмена двух цианофенильных лигандов в осуществил исходном палладиевом комплексе на бромид анионы (схема 1.9).

$$R^{2+}Br_{2}^{-} + [PdBr_{2}(C_{6}H_{5}CN)_{2}] \rightarrow R^{2+}[PdBr_{4}]^{2-}$$

Схема 1.9

R = 1,5-*бис*-(1-(4-цианофенил)имидазол-1-ил)пентил (80 %); 1,5-*бис*-(1-(4-метоксифенил)имидазол-1-ил)пентил (75 %) [12].

В структурно охарактеризованных моноядерных комплексах палладия атомы азота, фосфора и сурьмы имеют практически неискаженную тетраэдрическую конфигурацию с валентными углами СЭС (Э – N, P, Sb) близкими к 109°. В плоскоквадратных анионах $[PdBr_4]^{2-}$ длины связей Pd–Br изменяются в интервале 2,410 – 2,445 Å, что близко к сумме ковалентных радиусов атомов палладия и брома (2,5 Å) [13]. Основные геометрические параметры анионов $[PdBr_4]^{2-}$ приведены в таблице 1.1.

Таблица 1.1 — Длины связей и валентные углы ионных бромсодержащих комплексов палладия с анионом [PdBr₄]²⁻ идентифицированные методом PCA

Формула	Длины связей Pd–Br, Å	Валентные <i>цис</i> -углы Br–Pd–Br, °	Ссылки
$[C_7H_9N_4O_2]_2[PdBr_4]$	2,412 - 2,441	89,66 - 90,34	[3]
$[C_{16}H_{33}N]_2[PdBr_4]$	2,419 - 2,436	89,43 - 90,57	[4]
$[C_{22}H_{34}N_2][PdBr_4]$	2,430 - 2,435	89,86 - 90,14	[4]
$[C_{11}H_{16}NO_2][PdBr_4]$	2,437 - 2,449	89,50 - 90,50	[5]

Окончание таблицы 1.1

[Pd(LH)Br ₂] ₂ [PdBr ₄]	2,435 - 2,441	89,02 - 90,98	[7]
$[C_8H_{15}N_2]_2[PdBr_4]$	2,248 - 2,441	89,50 - 90,67	[8]
$[C_{11}H_{14}NO]_2[PdBr_4]$	2,446 - 2,450	89,51 - 90,49	[11]
$[C_{25}H_{30}N_4O_2][PdBr_4]$	2,410 - 2,445	88,63 - 91,39	[12]

1.1.2 Ионные комплексы палладия с моноядерными галогенсодержащими анионами типа [PdHal₃L]⁻, где L – нейтральная молекула

Структурное разнообразие комплексов палладия с анионом $[PdHal_3L]^$ определяется природой лиганда L. В качестве такового выступают молекулы диметилсульфоксида, трифенилфосфина, Ph₂SNCH₂CH₂CN, CO. В Science Finder и CCDC приведены данные о 17 комплексах палладия с анионом $[PdHal_3L]^-$ [1].

Bardi осуществил реакцию (схема 1.10), в которой происходит обмена хлора и трифенилфосфинового лиганда в результате нагревания *транс-бис*-трифенилфосфинпалладийдихлорида с 4-хлорбутаноном-2 в абсолютном этаноле:

$$EtOH \\ [PdCl_2(PPh_3)_2] + CH_3COCH_2CH_2Cl \rightarrow [Ph_3P(CH_2CH_2COCH_3)][PdCl_3(PPh_3)]$$

Схема 1.10

Комплекс аналогичного строения, показанный на рисунке 1.2, удалось получить путем расщепления димера [PdCl₂(PPh₃)]₂ под действием двух эквивалентов хлорида трифенилбутанон-2-илфосфония в этиловом спирте по схеме 1.11 [14].

$2 [Ph_3P(CH_2CH_2COCH_3)][PdCl_3(PPh_3)]$

Схема 1.11

Аналогичную трансформацию биядерного аниона $[Pd_2Br_6]^{2-}$ в моноядерный [PdBr₃(Ph₂SNCH₂CH₂CN)] под действием Ph₂SNCH₂CH₂CN наблюдал Kelly. В моноядерном комплексе [PPh₄][PdBr₃(Ph₂SNCH₂CH₂CN)] нейтральный лиганд Ph₂SNCH₂CH₂CN координируется на атом палладия посредством иминного атома азота. Выход продукта составил 35 %. Строение комплекса установлено с помощью PCA [15].

Рисунок 1.2 – Строение комплекса $[Ph_3P(CH_2CH_2COCH_3)]$ $[PdCl_3(PPh_3)]$

нейтрального биядерного Расщепление бромосодержащего комплекса ионный моноядерный под действием соли бромида палладия В _ 1,3-диизопропилбензимидазолия в хлороформе осуществил Han Vinh Huynh по схеме 1.12.

Схема 1.12

Был получен комплекс, содержащий четыре сольватные молекулы хлороформа. Выход продукта составил 95 % [16].

Вегкеі при проведении реакции между бромидом палладия(II) и бромидом тетра-*n*-бутиламмония в присутствии монооксида углерода в тетрахлорэтане выделил с выходом 42 % сольват, в анионе которого молекула СО внедрилась в координационную сферу атома палладия (схема 1.13) [17]:

$$C_{2}H_{2}Cl_{4}$$
[*n*-Bu₄N]Br + PdBr₂ + CO \rightarrow [*n*-Bu₄N][PdBr₃(CO)]· C₂H₂Cl₄

Схема 1.13

Структуры 4 комплексов палладия с анионами [PdHal₃L]⁻ идентифицированы методом PCA.

По данным PCA В плоскоквадратных анионах [PdHal₃L]⁻ длины связей Pd–Hal изменяются в интервале 2,279 – 2,504 Å. В комплексах такого типа наблюдается удлинение *транс* связи относительно *цис* за счёт влияния природы лиганда L.

Основные геометрические параметры анионов приведены в таблице 1.2.

Таблица	1.2 –	Длины	связей	И	валентные	углы	ионных	бромсодержащих
комплекс	ов палл	адия с ан	ионом	Pd	Hal ₃ L] ⁻			

Формула	Длины связей Pd–Hal _{цис}	Длины связей Pd– Hal _{транс}	Длины связей Pd–L в анионе, Å	Валент- ные углы Hal-Pd– Hal,°	Валент- ные углы Hal-Pd- L,°	Ссыл- ки
[Ph ₃ P(CH ₂ CH ₂ COCH ₃)] [PdCl ₃ (PPh ₃)]	2,279, 2,307	2,361	2,254 (Pd–P)	88,89 – 89,85	88,76 – 92,52	[14]
$[N(CH_2CH_2Et_2] \\ [OCPdBr_3] \cdot C_2H_2Cl_4$	2,423, 2,432	2,413	1,875 (Pd–C)	93,03 – 94,15	86,03 – 86,79	[17]
[PPh ₄] [PdBr ₃ (Ph ₂ SNCH ₂ CH ₂ CN)]	2,426, 2,430	2,423	2,025 (Pd–N)	91,32 – 92,23	88,08 – 88,82	[15]
$[C_{13}H_{19}N_2] \\ [C_{13}H_{18}N_2PdBr_3] \cdot 4 CHCl_3$	2,428, 2,444	2,504	1,951 (Pd–C)	93,06 – 94,01	85,12 – 87,82	[16]

1.1.3. Ионные комплексы палладия с моноядерными хлорсодержащими анионами типа [PdCl₃(DMSO)]⁻

Hazell получил первый комплекс данного типа, изображенный на рисунке 3, который имеет вид [Pd₂Cl₂(1,4-tpbd)][PdCl₃(DMSO)]₂ (где 1,4-tpbd – N,N,N',N'-тетракис(2-пиридилметилбензен)-1,4-диамин), проведя реакцию между хлоридом

палладия(II) и N,N,N',N'-тетракис(2-пиридилметилбензен)-1,4-диамином в диметилсульфоксиде [18].

Рисунок 1.3 – Строение комплекса [Pd₂Cl₂(1,4-tpbd)][PdCl₃(DMSO)]₂

Взаимодействием комплекса серебра с дихлоридом циклооктадиенпалладия(II) в диметилсульфоксиде был получен комплекс, который в дальнейшем был перекристаллизован из ацетонитрила (схема 1.14).

Схема 1.14

Выход продукта составил 49 % [19].

Heckenroth получил соединение, в котором амбидентатный диметилсульфоксидный лиганд координируется на атом палладия посредством атома серы:

Провёл реакцию между дииодидом *бис-*(1,1'-метилен-*бис*(5-хлор-2,3,4триметил-1Н-имидазол палладия(II)) в ацетонитриле с хлором с последующим осаждением в эфире и перекристаллизацией из метилового спирта/диметилсульфоксида/эфира. Выход продукта составил 48 % [20].

Комплекс [дурол(CH₂-бензимидазол-2-илиденпропил][PdCl₃(DMSO)]₂ синтезирован по схеме 1.15 Qing-Xiang Liu путём взаимодействия хлорида *бис*-[N-(н-пропил)бензимидазолимилметил]дурола с хлоридом палладия(II) в смеси ацетонитрил/диметилсульфоксид/ацетон:

Схема 1.15

Выход продукта составил 57 % [21].

Взаимодействием эквимольных количеств бромида тетрафенилстибония с бромидом палладия(II) в воде с последующей перекристаллизацией из диметилсульфоксида получили (схема 1.16):

 $[Ph_4Sb(DMSO)]Br + PdBr_2 \xrightarrow[DMSO]{H_2O} [Ph_4Sb(DMSO)][PdBr_3(DMSO)]$

Схема 1.16

Структуру полученного комплекса установили методом РСА [22].

Перекристаллизация осадков $[Ph_3(cyclo-C_5H_9)P]_2[Pd_2Br_6]$, $[Ph_3BuP]_2[Pd_2Br_6]$ и $[Ph_3AmP]_2[Pd_2Br_6]$ из диметилсульфоксида приводит к образованию комплексов $[Ph_3(cyclo-C_5H_9)P][PdBr_3(DMSO)]$, $[Ph_3BuP][PdBr_3(DMSO)]$ и $[Ph_3AmP][PdBr_3(DMSO)]$. Структуры полученных соединений доказаны методом PCA [23].

Комплексы [Ph₃PhCH₂P][PdCl₃(DMSO)]·DMSO, [Ph₄P][PdCl₃(DMSO)] и [Ph₄Sb(DMSO)][PdCl₃(DMSO)] были синтезированы с помощью реакций хлорида палладия(II) с эквимолярными количествами хлорида трифенилбензилфосфония, хлорида тетрафенилфосфония и хлорида тетрафенилстибония соответственно, с последующей перекристаллизацией в DMSO [24].

Christiane Lang и сотр. провели реакцию соответствующего комплекса палладия [Pd(cod)Cl₂], где соd – 2,6-*бис*-(1-(*n*-толил)-1H-1,2,3-триазол-4-ил) пиридин с диметилсульфоксидом в дихлорметане. Получили следующий комплекс [25]:

Структура 9 комплексов палладия с моноядерными трихлорсодержащими анионами, включающими в себя молекулу диметилсульфоксида установлена методом РСА. По данным РСА атомы азота, фосфора и сурьмы имеют практически неискаженную тетраэдрическую конфигурацию с валентными углами СЭС (Э – N, P, Sb) близкими к 109°. В плоскоквадратных анионах [PdCl₃(DMSO)]⁻ длины связей Pd–Cl изменяются в интервале 2,271 – 2,348 Å,

длины связей Pd–S равны 2,205 – 2,256 Å, что близко к сумме ковалентных радиусов атомов палладия и серы (2,3 Å) [14].

Основные геометрические параметры анионов приведены в таблице 1.3.

Таблица 1.3 – Длины связей и валентные углы ионных галогенсодержащих комплексов палладия с анионом [PdCl₃(DMSO)]⁻ идентифицированных методом PCA

Формула	Длины связей Pd–Cl _{цис}	Длины связей Pd– Cl _{транс}	Дли- ны связей Pd–S в анио-не, Å	Валент- ные углы Cl– Pd–Cl,°	Валент- ные углы Cl– Pd–S, °	Ссыл- ки
$[Pd_2Cl_2(1,4-tpbd)]$ $[PdCl_3(DMSO)]_2 \cdot H_2O$	2,283 – 2,312	3,311, 3,312	2,245 – 2,256	88,01 – 91,33	86,78 – 94,01	[18]
$\begin{bmatrix} C_{16}H_{16}ClPdN_8 \end{bmatrix}$ $\begin{bmatrix} PdCl_3(DMSO) \end{bmatrix}$	2,281 – 2,321	2,305	2,237	89,02 – 91,39	87,63– 92,32	[19]
$\label{eq:cl_13H_20Cl_2N_4]_2} [PdCl_3(DMSO)]_2(PdCl_4)$	2,271 – 2,311	2,286– 2,295	2,205– 2,216	89,42 – 91,71	85,96– 92,64	[20]
$[C_{32}H_{40}N_4][PdCl_3(DMSO)]_2$	2,328 – 2,348	2,341	2,239	88,95 – 92,10	88,63– 90,16	[21]
[Ph ₄ Sb(DMSO)] [PdBr ₃ (DMSO)]	2,298 – 2,301	2,307	2,241	89,58 – 90,01	89,20 – 91,38	[24]
[Ph ₃ PCH ₂ Ph] [PdCl ₃ (DMSO)] · DMSO	2,300 – 2,310	2,303	2,232	90,25 – 90,51	86,93 – 92,28	[24]
[Ph ₄ P][PdCl ₃ (DMSO)]	2,295 – 2,303	2,304	2,238	89,93 – 91,48	88,18 – 90,77	[24]
[C ₂₃ H ₁₉ ClN ₇ Pd] [PdCl ₃ (DMSO)]·2DMSO	2,286 – 2,301	2,310	2,249	89,31 – 91,26	86,26 – 93,21	[25]

1.1.4. Комплексы палладия с моноядерными галогенсодержащими анионами типа [PdHal₃(Et₂SO)]⁻

Кембриджская база структурных данных [2] и поисковая база Science Finder [1] не содержат информацию о комплексах палладия, в котором происходит внедрение молекулы диэтилсульфоксида в координационную сферу атома палладия.

Известен нейтральный комплекс *бис*-(µ₂-бромо)-дибромобис(дипропилсульфоксид-S)дипалладий(II), полученый Кролем и сотр. в ходе взаимодействия двух молекул бромида палладия(II) и двух молекул дипропилсульфоксида [26]. Структура комплекса, представленного на рисунке 1.4, была установлена методом РСА.

Рисунок 1.4 – Строение комплекса *бис-*(µ₂-бромо)-дибромо-бис(дипропилсульфоксид-S)дипалладий(II)

1.1.5. Ионные комплексы палладия с биядерными галогенсодержащими анионами типа [Pd₂Hal₆]²⁻

В Кембриджской базе структурных данных содержатся сведения о 35 фосфониевых и аммониевых комплексах палладия с биядерным анионом $[Pd_2Hal_6]^{2-}[2]$.

Примеры получения комплексов с биядерным анионом:

Kelly первый описал синтез биядерного ионного бромосодержащего комплекса тетрафинила гексадихлорпалладата(II), полученного по схеме 1.17 [27].

2 [PPh₄]Cl + 2 Na₂[PdCl₄]
$$\xrightarrow{CH_2Cl_2}$$
 [PPh₄]₂[Pd₂Cl₆] + 4 NaCl toluene

Схема 1.17

Позднее появилась работа, в которой был описан синтез кристаллов $[Et_3PNAsPh_3]_2[Pd_2Br_6]$, представленных на рисунке 1.5, путём выделения из насыщенного раствора эквивалентной смеси $[Et_3PNAsPh_3]Br$ и PdBr₂ в ацетонитриле.

Авторами сделан вывод о биядерном строении аниона на основе данных РСА [28].

Lassahn синтезировал гексахлородипалладат(II) ацетилметилентрифенилфосфония (схема 1.18) при взаимодействии ацетилметилентрифенилфосфорана с хлоридом палладия(II) в избытке хлороводородной кислоты в этиловом спирте:

$$2 \text{ CH}_3\text{C}(\text{O})\text{CH}_2\text{PPh}_3 + 2 \text{ PdCl}_2 + 2 \text{ HCl} \xrightarrow{\text{EtOH}} [\text{CH}_3\text{C}(\text{O})\text{CH}_2\text{PPh}_3][\text{Pd}_2\text{Cl}_6]$$

Схема 1.18

Полученный комплекс идентифицирован методом РСА [29].

Топdе выделил комплекс гексаиодидодипалладат(II) трифенилметилфосфония [PPh₃CH₃]₂[Pd₂I₆] из реакционной смеси карбонилированием метанола с использованием диацетоксипалладия(II), иодоводородной кислоты и трифенилфосфина (Pd(OAc)₂–HI–PPh₃). Авторами сделан вывод о биядерном строении аниона на основе данных PCA [30].

Рисунок 1.5 -комплекс [Et₃PNAsPh₃]₂[Pd₂Br₆]

Взаимодействием бромида палладия(II), бромида тетрабутиламмония в ацетоне был получен *бис*-(тетрабутиламмоний) дибромдипалладат(II) [31].

Martino Rimoldi синтезировал биядерный дибромидный комплекс палладия(II). Реакцию проводили между бромидом палладия (II) в ацетонитриле и неокупроином в дихлорэтане. Был получен комплекс *бис-(µ*₂-бром)тетрабромдипалладат(II) *бис-*(2,9-диметил-1,10-фенантролин-

N,N')палладия(II) с сольватной молекулой дихлорметана. Выход продукта составил 90 % [32].

Взаимодействием тетрабромопалладийводородной кислоты с бромидами тетраорганилфосфония в воде с последующей перекристаллизацией из ацетонитрила получены комплексы палладия [Ph₃(*cyclo*-C₅H₉)P]₂[Pd₂Br₆], [Ph₃BuP]₂[Pd₂Br₆] и [Ph₃AmP]₂[Pd₂Br₆]. Структуры охарактеризованы методом PCA [23].

Комплекс $[Ph_3PNSPh_2]_2[Pd_2Br_6]$, представленный на рисунке 1.6, был синтезирован путём взаимодействия $(Ph_3PNSPh_2)[BPh_4]$ с $(PPh_4)_2[Pd_2Br_6]$ [33].

Arderne и Holzapfel получили биядерный комплекс палладия, показанный на рисунке 1.7 с помощью реакции между хлороводородом, метанолом и ацетато-(2'ди-*трет*-бутилфосфино-1, 1'-дифенил-2-ил)палладием(II) в дихлорметане.

Выход продукта составил 74 %. Биядерное строение комплекса доказано методом РСА [34].

Рисунок 1.6 – Комплекс с биядерным бромосодержащим анионом палладия $[Pd_2Br_6]^{2-}$

Naghipour и сотр. [35] получили гексабромдипалладат(II) бис(2-бромметилбензил)трифенилфосфония в две стадии по схеме 1.19. В начале, к раствору 1,2-бис(бромметил)бензола добавили раствор трифенилфосфина. Затем полученный (2-бромметилбензил)трифенилфосфин бромид смешали с ацетатом палладия(II). Выход полученного биядерного комплекса составил 60%. Структура биядерного комплекса была установлена методом РСА.

Рисунок 1.7 – Комплекс с биядерным бромосодержащим анионом палладия [Pd₂Cl₆]^{2–}

Схема 1.19

Позднее в ходе аналогичной реакции [36] Arash и сотр. получили гексабромопалладат(II) *бис*[(2-метилацетатобензил)три(*n*-толил)фосфония] по схеме 1.20.

+ $\left[(CH_3C_6H_4)_3PCH_2C_6H_4CH_2OCOCH_3\right]$ (CH₃COO)

Схема 1.20

Структура 8 из комплексов палладия с биядерными бромосодержащими анионами установлена методом рентгеноструктурного анализа (PCA). В плоскоквадратных биядерных анионах заместители лежат в одной плоскости.

Основные геометрические параметры анионов приведены в таблице 1.4.

Таблица 1.4 — Длины связей и валентные углы ионных бромсодержащих комплексов палладия с анионом [Pd₂Hal₆]²⁻ идентифицированных методом PCA

	Лпины	Ллины	Валент-	Валент-	Валент-	
	длины	длины	ные	ные	ные	
Формина	ру ру	ру ру	углы	углы	углы	Ссыл-
Формула			Hal _{терм} –	Hal _{MOCT} -	Hal _{терм} -	КИ
	паі _{терм} ,		Pd–	Pd–	Pd-	
	A	A	Halmoct	Halmoct	Hal _{терм}	
[Ph ₃ AsNP(CH ₂) ₃	2,407 -	2,453 -	91,17 –	05 57	01.60	[27]
$(CH_3)_3]_2[Pd_2Br_6]$	2,411	2,462	91,61	83,37	91,09	[27]
[Dh DNSDh] [Dd Dr]	2,409 -	2,444 –	90,63 -	85,51 -	91,25 -	[22]
	2,418	2,455	92,15	85,58	92,33	[32]
	2,398 -	2,439 -	90,71 -	85,08 -	91,52 -	[20]
$[C_{16}\Pi_{36}\Pi_{2}]\Gamma U_{2}DI_{6}]$	2,418	2,451	91,92	85,44	93,03	[30]
$[C_{28}H_{24}N_4PdBr]_2$	2,399 -	2,464 -	90,89 -	06.07	00.57	[21]
$[Pd_2Br_6] \cdot CH_2Cl_2$	2,405	2,469	91,72	80,82	90,57	[31]
$[C_{28}H_{26}O_2P_1]_2[Pd_2Br_6]$	2,386 -	2,436 -	90,31 -	02 41	02.68	[25]
	2,410	2,449	91,83	93,41	92,08	[33]

Известно ограниченное число бромсодержащих комплексов с палладиевым анионом. Бромидные комплексы, включающие в себя молекулу диметилсульфоксида, координирующуюся посредством атома серы, ранее не были получены. Поэтому целью нашей работы явился синтез бромосодержащих ионных соединений палладия и изучение влияние растворителя на структуру аниона. Нами установлено, что взаимодействие тетрабромопалладийводородной кислоты с бромидами тетраорганилфосфония приводит к образованию комплексов с моноядерным анионом [PdBr₄]²⁻. С целью исследования влияния растворителей на дизайн ионных комплексов палладия нами проведены реакции перекристаллизации полученных комплексов из различных растворителей и изучены особенности строения методами PCA и ИК-спектроскопии.

В ходе реакции дибромида палладия с бромистоводородной кислотой и бромидом трифенилциклопропилфосфония в водном растворе образовался красно-коричневый мелкодисперсный осадок, который затем перекристаллизовывали из разных растворителей (схема 2.1) [37].

 $H_2[PdBr_4] + 2 [Ph_3(cyclo-C_3H_5)P]^+ Br^- \rightarrow [Ph_3(cyclo-C_3H_5)P]^+ 2 [PdBr_4]^{2-}$

Схема 2.1

Из ацетонитрила получили кристаллы комплекса $[Ph_3(cyclo-C_3H_5) P]^+_2[PdBr_4]^{2-}$ (I) того же красно-коричневого цвета.

По данным РСА, кристаллы комплекса I образованы трифенил(циклопропил)фосфониевыми катионами и плоскоквадратными палладат(II) анионами, структура которых изображена на рисунке 2.1. В кристалле содержатся по два типа кристаллографически независимых катионов и анионов, геометрические параметры которых мало отличаются.

Рисунок 2.1 – Строение комплекса I

Катионы в комплексе I имеют практически неискаженную тетраэдрическую координацию с валентными углами СРС: 107,4(2)° – 111,1(2)°, которые мало отличаются от теоретического значения, и близкие значения длин связей Р–С 1,773(5) – 1,802(5) Å. В центросимметричных квадратных анионах [PdBr₄]²⁻ атомы палладия располагаются в центре инверсии. Длины связей Pd(1)–Br(1,2)

(2,4459(5) и (2,4333(5) Å), Pd(2)–Br(3,4) (2,4362(5) и 2,4431(7) Å) близки между собой; *цис*-углы BrPd(1)Br (89,642(18)°, 90,358(18)°), BrPd(2)Br (90,46(2)°, 89,54(2)°) практически не отличаются от теоретического значения 90°. *Транс*-углы BrPdBr составляют 180° (таблица А.1).

Структурная организация в кристалле I, обусловлена межионными водородными связями, изображенными на рисунке 2.2, с участием атомов брома и атомов водорода циклопропильных и фенильных заместителей (при сумме вандерваальсовых радиусов атомов брома и водорода 3,1 Å [13]).

Рисунок 2.2 – Система водородных связей в кристалле комплекса I

При взаимодействии бромида палладия(II) с бромистоводородной кислотой и дибромидом триэтилен-*бис*-трифенилфосфония в водном растворе образовался мелкодисперсный осадок кирпичного цвета [38]. При перекристаллизации из ацетонитрила образовались кристаллы [Ph₃P(CH₂)₃PPh₃] [PdBr₄] (II) с Т_{разл} = 296 °C

По данным PCA, в состав комплекса II, изображенного на рисунке 2.3, входят катионы $[Ph_3P(CH_2)_3PPh_3]^{2+}$ и анионы $[PdBr_4]^{2-}$.

Катионы в комплексе II имеют слегка искаженную тетраэдрическую координацию с валентными углами СРС: $105,24(13)^{\circ} - 113,36(13)^{\circ}$, длины связи P–C лежат в пределах 1,796(3) – 1,805(3) Å. В плоскоквадратных анионах $[PdBr_4]^{2-}$ длины связей Pd–Br изменяются в интервале 2,4316(3) – 2,4447(3) Å (таблица A.2), что близко к сумме ковалентных радиусов атомов палладия и брома (2,5 Å) [13].

В кристалле II присутствуют водородные связи, показанные на рисунке 2.4, типа С-Н. Вг, в образовании которых принимают участие *орто*-атомы водорода

H(36) фенильного лиганда катиона и атомы брома Br(3) аниона; атомы водорода H(29A) метильного лиганда и атомы брома Br(3) аниона.

Рисунок 2.3 – Строение комплекса II

Рисунок 2.4 – Водородные связи в комплексе II

При перекристаллизации комплекса $[Ph_3(cyclo-C_3H_5)P]^+_2$ $[PdBr_4]^{2-}$ из диметилформамида наблюдали одновременное образование кристаллов двух типов: темно-коричневые кристаллы комплекса I (40 %) и кристаллы красного цвета, представляющие собой комплекс с биядерным анионом $[Ph_3(cyclo-C_3H_5)P]^+_2$ $[Pd_2Br_6]^{2-}$ (III) (46 %) [37].

Можно предположить, что в растворах имеет место динамическое равновесие $I \leftrightarrow III$ (схема 2.2).

$$I \qquad DMFA \qquad III \\2 [Ph_3(cyclo-C_3H_5)P]^+ {}_2[PdBr_4]^{2-} \leftrightarrow [Ph_3(cyclo-C_3H_5)P]^+ {}_2[Pd_2Br_6]^{2-} + \\+ 2 [Ph_3(cyclo-C_3H_5)P]^+ Br^-$$

Схема 2.2

Смещение равновесия в ту или другую сторону определяется природой растворителя. Так, в ацетонитриле превалирует форма I.

По данным PCA, в состав комплекса III, структура которого показана на рисунке 2.5, входят трифенил(циклопропил)фосфониевые катионы и биядерные гексабромодипалладат(II) анионы.

Рисунок 2.5 – Строение комплекса III

Катионы в комплексе III имеют слегка искаженную тетраэдрическую конфигурацию с валентными углами СРС: 107,2(2)° – 111,2(2)°

В плоских центросимметричных биядерных анионах $[Pd_2Br_6]^{2-}$ расстояния Pd-Br_{мост} и Pd-Br_{терм} составляют 2,4559(7), 2,4600(7) Å и 2,3952(7), 2,4045(8) Å, углы PdBrPd и Br_{терм}PdBr_{терм} равны 92,57(2)° и 91,98(3)° соответственно (таблица А.3).

В кристалле III наблюдаются опорные контакты между атомами водорода фенильных и циклопропильных заместителей в катионах с атомами брома анионов (расстояния С–Н…Вг составляют 2,96 – 3,00 Å).

При перекристаллизации комплекса II из диметилформамида образовались кристаллы $[Ph_3P(CH_2)_3PPh_3]^{2+}$ $[PdBr_4]^{2-}$ с $T_{разл} = 296$ °C и $[Ph_3P(CH_2)_3PPh_3]^{2+}$ $[Pd_2Br_6]^{2-}$ с $T_{разл} = 293$ °C [38].

Можно предположить, также как и в случае с комплексами I и III, что в растворах имеет место динамическое равновесие II \leftrightarrow IV (схема 2.3).

$$II DMFA IV$$

$$2 [Ph_3P(CH_2)_3PPh_3]^{2+} [PdBr_4]^{2-} \leftrightarrow [Ph_3P(CH_2)_3PPh_3]^{2+} [Pd_2Br_6]^{2-} \cdot DMFA + [Ph_3P(CH_2)_3PPh_3]Br_2$$

Схема 2.3

По данным PCA, в состав комплекса IV, строение которого изображено на рисунке 2.6, входят катионы $[Ph_3P(CH_2)_3PPh_3]^{2+}$ и анионы $[Pd_2Br_6]^{2-}$.

Катионы в комплексе IV имеют слегка искаженную тетраэдрическую координацию с валентными углами СРС: $106,3(4)^{\circ} - 111,9(4)^{\circ}$, и близкие значения длин связей P–C 1,785(8), 1,807(8) Å. *Цис*-углы BrPdBr 90,30(5)^{\circ} – 91,97(5)^{\circ} слегка отличаются от теоретического значения 90°. *Транс*-углы BrPdBr составляют 176,73(5) – 178,22(5)°. В плоских центросимметричных биядерных анионах $[Pd_2Br_6]^{2-}$ расстояния Pd–Br_{мост} и Pd–Br_{терм} составляют 2,4520(13), 2,4599(13) Å и 2,3936(15), 2,4096(13) Å, углы PdBrPd и Br_{терм}PdBr_{терм}

Рисунок 2.6 – Строение комплекса IV

В кристалле IV наблюдаются опорные контакты между атомами водорода этильных и фенильных заместителей в катионах с атомами брома анионов (расстояния С–Н…Вг составляют 3,00 – 3,03 Å).

Комплексы с анионом [PdBr₃(DMSO-S)]⁻ могут быть получены тремя способами.

1. Непосредственно взаимодействием бромидов трифенилорганилфосфония с дибромидом палладия в растворе DMSO (схема 2.4 и 2.5).

DMSO

 $[Ph_3PR]Br + PdBr_2 \rightarrow [Ph_3PR]^+ [PdBr_3(DMSO-S)]^-$

Схема 2.4

R = *cyclo*-C₃H₅ (V) (129 °C с разл., 78%) [37]; *cyclo*-C₆H₁₁ (VI) (230 °C с разл., 91%).

DMSO $[Ph_3PRPPh_3]^{2+}Br_2^{-} + 2PdBr_2 \rightarrow [Ph_3PRPPh_3]^{2+}[PdBr_3(DMSO-S)]_2^{-}$

Схема 2.5

R = CH=CH (VII) (150 °С с разл., 83%) [39]; (CH₂)₃ (VIII) (167 °С с разл., 76%) [38].

2. Перекристаллизацией моноядерных комплексов из DMSO (схема 2.6 и 2.7)

DMSO $[Ph_3PR]^+_2[PdBr_4]^{2-} \rightarrow [Ph_3PR]^+[PdBr_3(DMSO-S)]^- + [Ph_3PR]^+Br^-$

Схема 2.6

R = *cyclo*-C₃H₅ (V) (129 °C с разл., 98%);*cyclo*-C₆H₁₁ (VI) (230 °C с разл., 96%).

DMSO $2[Ph_3PRPPh_3]^{2+}[PdBr_4]^{2-} \rightarrow [Ph_3PRPPh_3]^{2+}[PdBr_3(DMSO-S)]_2^{-} + [Ph_3PRPPh_3]^{2+}Br_2^{-}$

Схема 2.7

R = CH=CH (VII) (150 °С с разл., 97%); (CH₂)₃ (VIII) (167 °С с разл., 99%).

3. Перекристаллизацией биядерных комплексов из DMSO (схема 2.8 и 2.9).

DMSO $[Ph_3PR]^+_2[Pd_2Br_6]^{2-} \rightarrow 2[Ph_3PR]^+[PdBr_3(DMSO-S)]^-$

Схема 2.8

R = *cyclo*-C₃H₅ (V) (129 °С с разл., 97%); *cyclo*-C₆H₁₁ (VI) (230 °С с разл., 99%).

DMSO $[Ph_3PRPPh_3]^{2+}[Pd_2Br_6]^{2-} \rightarrow [Ph_3PRPPh_3]^{2+}[PdBr_3(DMSO-S)]_2^{-}$

Схема 2.9

R = CH=CH (VII) (150 °С с разл., 96%); (CH₂)₃ (VIII) (167 °С с разл., 98%).

По данным PCA, кристаллы комплекса V, структура которого показана на рисунке 2.7, образованы трифенил(циклопропил)фосфониевыми катионами и трибромо(диметилсульфоксидо)палладат(II) анионами.

Катионы в кристалле V имеют практически неискаженную тетраэдрическую координацию с валентными углами СРС: 108,4(2)° - 110,5(2)° (таблица А.5). Во всех катионах комплексов I, III, V связи $P-C(C_3H_5-cyclo)$ короче, чем P-C(Ph)А.5). В анионах [PdBr₃(DMSO-*S*)]⁻ углы BrPdBr (таблицы A.1, A.3, (89,07(3)°, 89,86(3)°) немного меньше углов SPdBr (90,36(4), 90,67(4)°). 2,4288(6), Расстояния Pd-Br составляют 2,3986(7), 2,4222(7)Å. Диметилсульфоксидные лиганды координируются на атом палладия атомом серы. Длина связи Pd–S равна 2,2633(13) Å (таблица А.5) и меньше суммы ковалентных радиусов атомов палладия и серы (2,34 Å) [13]. Плоскость квадрата [Br₃S] развернута таким образом, чтобы заместители при связи Pd-S приняли наиболее выгодную «шахматную» конформацию.

Рисунок 2.7 – Строение комплекса V

В кристалле V, рисунок 2.8, имеют место водородные связи типа C-H···O и C-H···Br, в образовании которых принимают участие диметилсульфоксидные лиганды и атомы водорода фенильных лигандов катионов.

Рисунок 2.8 – Система водородных связей в кристалле комплекса V

По данным PCA, кристалл комплекса VI, изображенный на рисунке 2.9, образован катионами $[(cyclo-C_6H_{11})PPh_3]^+$ и анионами $[PdBr_3(DMSO-S)]^-$.

Атомы фосфора в катионах имеют слегка искажённую тетраэдрическую структуру, углы СРС изменяются в пределах 106,13 – 112,03°, длины связей P–C 1,796(5), 1,796(5), 1,799(5), 1,812(4) Å. Углы BrPdBr в анионе [PdBr₃(DMSO-*S*)]⁻ практически не искажены и изменяются в пределах 87,04 – 93,16°, длины связей Pd–Br 2,4226(7), 2,4278(6), 2,4375(7) Å (таблица А.6).

Структурной особенностью комплекса VI является наличие системы водородных связей (рисунок 2.10) Н····О и Н···Br, благодаря которым каждый анион связан с тремя катионами: H(22)···O(1) (2,29 Å) с одним катионом, H(15)···O(1) (2,58 Å) со вторым и двумя связями H···Br – H(31)···Br(1) (2,82 Å) и H(26)···Br(2) (2,97 Å) с третьим.

Рисунок 2.9 – Строение комплекса VI

Рисунок 2.10 – Водородные связи в комплексе VI

По данным РСА [39], атомы фосфора катионов 1,2-винилен-*бис*трифенилфосфония [Ph₃PCH=CHPPh₃]²⁺ имеют слабо искаженную тетраэдрическую координацию, рисунок 2.11.

Рисунок 2.11 – Строение комплекса VII (молекула сольватационного растворителя не показана)

Валентные углы СРС 107,8(3)° – 111,7(3)° мало отличаются от теоретического значения. Расстояния Р-С 1,779(6) - 1,816(5) Å (таблица А.7) близки к сумме ковалентных радиусов атомов фосфора и углерода 1,88 Å [13]. Группы Ph₃P находятся в *транс*-положениях относительно винильного фрагмента. Атомы палладия в квадратных моноядерных анионах четырехкоординированы, длины связей Pd–Br изменяются В интервалах 2,4200(18)_ 2,4486(9) Å Диметилсульфоксидные лиганды координируются ПО атому палладия посредством атомов серы, расстояния Pd-S равны 2,2634(17) и 2,2666(18) Å (таблица А.7).

В кристалле комплекса VII присутствуют многочисленные водородные связи (рисунок 2.12) между катионами, анионами и сольватными молекулами растворителя типа Н…Br (2,90 – 3,02 Å) и Н…O (2,30 – 2,56 Å), наиболее прочная из которых (2,30 Å) образована атомом кислорода O(2) координированной молекулы диметилсульфоксида аниона и атомом водорода H(27) винильного фрагмента катиона.

Рисунок 2.12 – Водородные связи в комплексе VII

Рисунок 2.13 – Строение комплекса VIII

Данные РСА [37] позволяют судить о том, что анионы [PdBr₃(DMSO-S)]⁻ в комплексе VIII (рис. 2.13) имеют искаженную плоско-квадратную конфигурацию, молекула DMSO координируется на атом палладия атомом серы, эффект удлинения *транс*-связи практически не проявляется.

Валентные углы СРС $105.8(5)^{\circ} - 113.0(5)^{\circ}$ мало отличаются от теоретического значения. Расстояния Р–С 1.775(10) - 1.827(8) Å (таблица А.8) близки к сумме ковалентных радиусов атомов фосфора и углерода 1,88 Å [13]. Атомы палладия в квадратных моноядерных анионах четырехкоординированы, длины связей Pd–Br изменяются в интервалах 2.4223(16) - 2.4499(15) Å. Диметилсульфоксидные лиганды координируются по атому палладия посредством атомов серы, расстояния Pd–S равны 2.242(3) и 2.256(3) Å (таблица А.8).

При растворении фосфониевых комплексов с анионом [PdBr₄]²⁻ в диэтилсульфоксиде наблюдается аналогичная реакция лигандного обмена аниона брома на молекулу растворителя:

 Et_2SO $[Ph_3PR]^+_2[PdBr_4]^{2-} \rightarrow [Ph_3PR]^+[PdBr_3(Et_2SO-S)]^- + [Ph_3PR]^+Br^-$

Схема 2.10

R = *cyclo*-C₃H₅ (IX) (200°С с разл., 81%); *cyclo*-C₆H₁₁ (X) (225 °С с разл., 87%).

 $\begin{array}{c} Et_2SO\\ 2[Ph_3P(CH_2)_3PPh_3]^{2+}[PdBr_4]^{2-} \rightarrow [Ph_3P(CH_2)_3PPh_3]^{2+}[PdBr_3(Et_2SO-S)]^{-}_2\\ + 2[Ph_3P(CH_2)_3PPh_3]^{2+}Br_2^{-} \qquad (XI) \ (176 \ ^\circ C \ c \ pa_{3\pi.}, \ 73\%) \end{array}$

Схема 2.11

Диэтилсульфоксид координируется на атом палладия посредством атома серы. Таким образом, взаимодействием бромидов трифенилорганилфосфония с бромидом палладия(II) в присутствии бромоводородной кислоты в воде моноядерным анионом $[PdBr_4]^{2-}$. получены ионные комплексы c Перекристаллизация в ацетонитриле не приводит к изменению структуры аниона. В диметилформамиде наблюдается динамическое равновесие между моно- $[PdBr_4]^{2-}$ и биядерной $[Pd_2Br_6]^{2-}$. формами. В диметил- и диэтилсульфоксиде молекулы растворителя замещают один из анионов брома, что приводит к образованию анионов $[PdBr_3(R_2S=O-S)]^-$, R=Me, Et.

ГЛАВА З ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК-спектры комплексов записывали на ИК-спектрометре Bruker Tensor 27 в таблетках KBr в области 4000 – 400 см⁻¹. Рентгеноструктурный анализ (РСА) кристаллов комплексов I – VIII проводили на автоматическом четырехкружном лифрактометре D8 QUEST фирмы Bruker (Мо К_{α}-излучение, $\lambda = 0.71073$ Å, графитовый монохроматор). Сбор, редактирование данных и уточнение параметров элементарной ячейки, а также учет поглощения проведены по программам SMART и SAINT-Plus [40]. Все расчеты по определению и уточнению структуры выполнены по программам SHELXL/PC [41] и OLEX2 [42]. Все структуры определены прямым методом и уточнены методом наименьших приближении квадратов В анизотропном для неводородных атомов. Кристаллографические данные, параметры эксперимента и уточнения структур, длины связей и валентные углы комплекса I – VIII приведены в приложении А (таблицы А.9 – А.12).

Синтез PdBr₂. Осуществляли по методике приведенной в [43]. 2 г мелкоизмельченного металлического палладия растворяли при нагревании в 10 мл 48 %-ного раствора бромистоводородной кислоты, содержащей 2 мл брома. После осторожного выпаривания полученного раствора наблюдали образование темно-коричневого порошка. Выход бромида палладия количественный (5 г).

Синтез $[Ph_3(cyclo-C_3H_5)P]^+{}_2[PdBr_4]^{2-}$ (I). В 2 мл 48 %-ной бромистоводородной кислоты растворяли 0,15 г дибромида палладия (0,56 ммоль) и при перемешивании прибавляли раствор 0,431 г (1,12 ммоль) бромида трифенил(циклопропил)фосфония в 20 мл горячей воды. Наблюдали образование осадка красно-коричневого цвета, который фильтровали и сушили. После перекристаллизации из ацетонитрила получили 0,58 г (99 %) красно-коричневых кристаллов I с $T_{paзл} = 233$ °C.

Найдено, %: С 48,76, Н 3,94.

Для C₄₂H₄₀P₂PdBr₄ вычислено, %: С 48,82, Н 3,87.

ИК-спектр (*v*, см⁻¹): 3076, 3050, 3020, 2994, 1585, 1479, 1436, 1338, 1314, 1297, 1191, 1160, 1114, 1077, 1055, 1023, 995, 894, 865, 842, 797, 787, 772, 750, 726, 689, 662, 525, 498 (рис.Б.1).

Аналогично получен, исходя из бромида палладия(II), $[Ph_3P(CH_2)_3PPh_3]^{2+}$ $[PdBr_4]^{2-}(II)$ – кристаллы красно-коричневого цвета, $T_{pa3n} = 296$ °C.

ИК-спектр (v, см⁻¹): 3054, 3022, 2889, 1666, 1584, 1483, 1437, 1190, 1161, 1111, 1030, 995, 961, 822, 731, 719, 689, 540, 529, 505, 492, 471, 428.

Найдено, %: С 47.06; Н 3.71. С₃₉Н₃₆Р₂Вr₄Рd.

Вычислено, %: С 47.18; Н 3.63

Синтез $[Ph_3(cyclo-C_3H_5)P]^+{}_2[Pd_2Br_6]^2-$ (III). В 2 мл 48 %-ной бромистоводородной кислоты растворяли 0,15 г дибромида палладия (0,56 ммоль) и при перемешивании прибавляли раствор 0,431 г (1,12 ммоль) бромида трифенилциклопропилфосфония в 20 мл горячей воды. Наблюдали образование

осадка красно-коричневого цвета, который фильтровали и сушили. После перекристаллизации из диметилформамида получили кристаллы двух типов: 0,30 г (52 %) красно-коричневых кристаллов I с $T_{\text{разл}} = 233$ °C и 0,27 г (46 %) красных кристаллов III с $T_{\text{разл}} = 239$ °C.

ИК-спектр комплекса III (*v*, см⁻¹): 3075, 3051, 3020, 2993, 1586, 1479, 1437, 1337, 1315, 1298, 1192, 1161, 1115, 1078, 1055, 1024, 996, 895, 865, 843, 798, 787, 773, 752, 726, 688, 663, 526, 497 (рис.Б.2).

Найдено, %: С 39,57, Н 3,14.

Для C₄₂H₄₀P₂Pd₂Br₆ вычислено, %: С 38,82, Н 3,08.

Аналогично, перекристаллизацией в диметилформамиде получен комплекс $[\mathbf{Ph_3P(CH_2)_3PPh_3]}^{2+}[\mathbf{PdBr_4}]^{2-}$ (II) – кристаллы светло-коричневого цвета, 61%, $T_{\text{разл}} = 296 \text{ °C}.$

ИК-спектр (*v*, см⁻¹): 3054, 3022, 2889, 1666, 1584, 1483, 1437, 1190, 1161, 1111, 1030, 995, 961, 822, 731, 719, 689, 540, 529, 505, 492, 471, 428 (рис.Б.3).

Найдено, %: С 47.06; Н 3.71. С₃₉Н₃₆Р₂Вr₄Рd.

Вычислено, %: С 47.18; Н 3.63

и сольват $[Ph_3P(CH_2)_3PPh_3]^{2+}[Pd_2Br_6]^{2-} \cdot DMFA$ (IV) – кристаллы коричневого цвета, 32%, $T_{\text{разл}} = 293 \text{ °C}.$

ИК-спектр (*v*, см⁻¹): 3049, 3028, 2933, 2891, 2847, 1667, 1584, 1483, 1437, 1381, 1188, 1165, 1113, 1092, 997, 764, 741, 725, 687, 538, 527, 511, 500, 486, 432 (рис.Б.4).

Найдено, %: С 37.67; Н 3.29. С₄₂Н₄₃ONP₂Br₆Pd₂.

Вычислено, %: С 37.86; Н 3.23.

Синтез $[Ph_3(cyclo-C_3H_5)P]^+$ $[PdBr_3(DMSO)]^-$ (V). К 0,05 г (0,19 ммоль) дибромида палладия добавляли раствор 0,07 г (0,19 ммоль) бромида трифенил(циклопропил)фосфония в 4 мл диметилсульфоксида. Наблюдали образование красно-коричневых кристаллов комплекса,78%, $T_{pa3n} = 129$ °C.

Комплекс V также был получен при растворении навески 0.1 г кристаллов комплексов I и III в 2 мл диметилсульфоксиде, красно-коричневые кристаллы с $T_{\text{разл}} = 129 \text{ °C}.$

Найдено, %: С 37,87, Н 3,64.

Для C₂₃H₂₆OSPPdBr₃ вычислено, %: С 37,94, Н 3,57.

ИК-спектр (*v*, см⁻¹): 3053, 2984, 1587, 1482, 1437, 1340, 1316, 1292, 1193, 1163, 1115, 1072, 1051, 1020, 996, 964, 928, 894, 864, 835, 791, 748, 724, 690, 662, 527, 494, 460, 421.

По аналогичным методикам получены:

 $[(cyclo-C_6H_{11})PPh_3]^+[PdBr_3 DMSO]^-$ (VI) – красно-коричневые кристаллы, 91 %, $T_{payn} = 230 \text{ °C}.$

ИК-спектр (v, см⁻¹): 3078, 3051, 3011, 2928, 2855, 1483, 1437, 1121, 1109, 1024, 995, 754, 723, 692, 544, 527, 517, 419 (рис.Б.5).

 $[Ph_3PCH=CHPPh_3]^{2+}$ $[PdBr_3 \cdot DMSO]_2 \cdot DMSO$ (VII) – кристаллы вишнёвого цвета с $T_{\text{разл}} = 150 \text{ °C}.$

ИК-спектр (*v*, см⁻¹): 3078, 3055, 3027, 2993, 2911, 1583, 1479, 1436, 1405, 1310, 1288, 1189, 1164, 1111, 1022, 997, 970, 932, 916, 842, 771, 743, 726, 686, 524, 488, 449, 425.

Найдено, %: С 35,66, Н 3,54.

Для C₄₄H₅₀O₃S₃P₂Pd₂Br₆ вычислено, %: С 35,75, Н 3,39.

 $[Ph_3P(CH_2)_3PPh_3]^{2+}[PdBr_3·DMSO]_2$ (VIII) — кристаллы красного цвета с $T_{pa_{3,7}} = 167 \ ^{\circ}C.$

ИК-спектр (v, см⁻¹): 3076, 3053, 3020, 2992, 2931, 2909, 2893, 1585, 1437, 1402, 1337, 1310, 1285, 1188, 1111, 1022, 1015, 997, 974, 750, 719, 689, 536, 511, 500, 447, 424 (рис.Б.б).

Найдено, %: С 36.32; Н 3.43. С₄₃Н₄₈О₂S₂P₂Br₆Pd₂.

Вычислено, %: С 36.49; Н 3.39.

Синтез $[(cyclo-C_3H_5)PPh_3]^+$ [PdBr₃·Et₂SO]⁻ (IX).

В 2 мл 48 %-ной бромистоводородной кислоты растворяли 0,15 г дибромида палладия (0,56 ммоль) и при перемешивании прибавляли раствор 0,431 г (1,12 ммоль) бромида трифенил(циклопропил)фосфония в 20 мл горячей воды. Наблюдали образование осадка оранжевого цвета, который фильтровали и сушили. После перекристаллизации из диэтилсульфоксида получили 0,58 г (81 %) вишнёвых кристаллов IX с Т_{разл} = 200 °C. ИК-спектр комплекса IX представлен на рисунке Б.7.

Аналогично получены:

 $[(cyclo-C_6H_{11})PPh_3]^+[PdBr_3 Et_2SO]^-(X) - красно-коричневые кристаллы, 87%,$ T_{разл} = 225 °C. ИК-спектр комплекса X представлен на рисунке Б.8.

 $[Ph_3P(CH_2)_3PPh_3]^{2+}[PdBr_3 Et_2SO]_2$ (XI) — красные кристаллы, 73%, $T_{pa3\pi} = 176$ °С. ИК-спектр комплекса XI представлен на рисунке Б.9.

ЗАКЛЮЧЕНИЕ

- 2) Взаимодействием бромидов трифенилорганилфосфония с бромидом палладия(II) в присутствии бромоводородной кислоты получены новые ионные комплексы палладия с моноядерным анионом [PdBr₄]²⁻.
- 3) Установлено, что перекристаллизация комплексов из ацетонитрила не приводит к изменению строения аниона. При перекристаллизации из диметилформамида устанавливается динамическое равновесие между монои биядерной [Pd₂Br₆]²⁻ формами. При растворении исходных реагентов, а также моно- и биядерных комплексов в диметил- или диэтилсульфоксиде наблюдаются реакции лигандного обмена аниона брома на молекулу сульфоксида сопровождающиеся образованием анионов [PdBr₃(R₂S=O-S)]⁻, R=Me, Et.
- 4) Строение 9 комплексов доказано методом РСА.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1 https://scifinder.cas.org.

2 http://www.ccdc.cam.ac.uk/pages/Home.aspx.

3 Salas, J.M. Synthesis, spectroscopic studies, and crystal structure of theophyllinium tetrabromopalladate(II) / J.M. Salas, E. Colacio, M.N. Moreno, J. Ruiz, T. Debaerdemaeker, J. Via, M.I. Arriortua // J. Crystallogr. Spectrosc. Res. – 1989. – V. 19, N_{2} 2. – P. 755.

4 Neve, F. Synthesis, structure, and thermotropic mesomorphism of layered N-alkylpyridinium tetrahalopalladate (II) salts / F. Neve, A. Crispini, S. Armentano, O. Francescangeli // Chem. Mater. – 1998. – V. 10. – P. 1904–1913.

5 Neve, F. Competitive interactions in carboxy-functionalized pyridinium salts: Crossover from O-H···O to O-H···X-M contacts / F. Neve, A. Crispini // Cryst. Eng. Comm. -2007. - V. 9. - P. 689-703.

6 Gasanov, Kh.I. Cation-anion complexes of palladium(II) and platinum(II) with diand triethanolamines / Kh.I. Gasanov, D.I. Mirzai // Khimiya i Khimicheskaya Tekhnologiya. – 2000. – V. 43. – P. 108–111.

7 Seeber, G. Palladium(II)-based cis,trans-1,3,5-triaminocyclohexane complexes demonstrating a variety of coordination modes and architectures / G. Seeber, D. Long, B. Kariuk, L. Cronin // Dalton Trans. – 2003. – V. 15. – P. 4498–4504.

8 Zhong, C. Bis(1-n-butyl-3-methylimidazolium) tetrabromopalladate(II) / C. Zhong, Y. Zuo, H. Jin, T. Wang, S. Liu // Acta Cryst. – 2006. – V. E62. – P. m2281– m2283.

9 Tusek-Bozic, L. Synthesis, characterization and antitumor activity of palladium(II) complexes of monoethyl 8-quinolylmethylphosphonate / L. Tusek-Bozic, M. Juribasic, P. Traldi, V. Scarcia, A. Furlani // Polyhedron. – 2008. – V. 27. – P. 1317–1328.

10 Barrios-Landeros, F. Autocatalytic oxidative addition of PhBr to $Pd(PtBu_3)_2$ via $Pd(PtBu_3)_2(H)(Br) / F$. Barrios-Landeros, B.P. Carrow, J.F. Hartwig // Journal of the American Chemical Society. – 2008. – V. 130, No 18. – P. 5842–5843.

11 Mantas-Oktem, K. Reactions of Nitrogen Donors with Cycloheptatrienylidene Complexes: Metal Coordination versus Nucleophilic Attack on the Carbene Ligand / K. Mantas-Oktem, K. Ofele, A. Pothig, B. Bechlars, W. Herrmann // Organometallics. – 2012. – V. 31. – P. 8249–8256.

12 Trivedi, M. New pentamethylene-bridged bis-imidazolium dication ligands and its palladium(II) complexes: Synthesis, characterization, and catalysis / M. Trivedi, R. Nagarajan, N.P. Rath, A. Kumar, K.C. Molloy // Inorganica Chimica Acta. – 2012. – V. 383. – P. 118–124.

13 Бацанов, С.С. Атомные радиусы элементов / С.С. Бацанов // Журнал неорганической химии. – 1991. – Т. 36, № 12. – С. 3015–3037.

14 Bardi, R. Reactivity of Functionalized Halo-derivatives with Transition Metal Complexes. Synthesis and X-Ray Diffraction Study of $[Ph_3P(CH_2CH_2COCH_3)]^+[PdCl_3(PPh_3)]^-$ Obtained by Reaction of trans- $[PdCl_2(PPh_3)_2]$

with CH₃COCH₂CH₂Cl / R. Bardi, A.M. Piazzesi // Inorganica Chimica Acta. – 1983. – V. 75. – P. 15–19.

15 Kelly, P. A comparison of the coordination chemistry of Ph2SNH and Ph2SNCH2CH2CN: the preparation and X-ray crystal structures of $[PPh_4]PdBr_3(Ph_2SNCH_2CH_2CN)]$ and trans- $[PdBr_2SNCH_2CH_2CN)_2]$, the first fully characterised complexes of a N-substituted sulfimide / P. Kelly, K.G. Parker, M.A. Rodiel, A.M. Slawin // J. Organomet. Chem. – 2001. – V. 623. – P. 120–123.

16 Huynh, H. Palladium(II) Complexes of a Sterically Bulky, Benzannulated N-Heterocyclic Carbene with Unusual Intramolecular C-H^{\cdot}Pd and C_{carbene}^{\cdot}Br Interactions and Their Catalytic Activities / H. Huynh, Y. Han, J. Ho, G. Tan // Organometallics. – 2006. – V. 25. – P. 3267–3274.

17 Berkei, M. Crystal Structure of Tetrabutylammonium Carbonyltribromoplatinate(II) $[(C_4H_9)_4N]$ [PtBr₃(CO)] / M. Berkei, J.F. Bickley, B. T. Heaton // Z. Naturforsch. – 2002. – V. 57b. – P. 610–614.

18 Hazell, A. Mono-, di- and poly-nuclear transition-metal complexes of a bis(tridentate) ligand: towards p-phenylenediamine-bridged co-ordination polymers / A. Hazell, C. McKenzie, L.P. Nielsen // J. Chem. Soc. Dalton Trans. – 1998. – V. 7. – P. 1751–1756.

19 Meyer, D. Palladium Complexes with Pyrimidine-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Structure and Catalytic Activity / D. Meyer, M. Taige, A. Zeller, K. Hohlfeld, S. Ahrens, T. Strassner // Organometallics. – 2009. – V. 28. – P. 2142–2149.

20 Heckenroth, M. On the Electronic Impact of Abnormal C4-Bonding in N-Heterocyclic Carbene Complexes / M. Heckenroth, A. Neels, M.G. Garnier, P. Aebi, A. W. Ehlers, M. Albrecht // Chem. Eur. J. – 2009. – V. 15. – P. 9375–9386.

21 Liu, Q. N-Heterocyclic carbene copper(I), mercury(II) and silver(I) complexes containing durene linker: synthesis and structural studies / Q. Liu, A. Chen, X. Chen, Y. Zang, X. Wu, X. Wang // CrystEngComm. – 2011. – V. 13. – P. 293.

B.B. 22 Шарутин Синтез строение И комплекса палладия [PH₄SB(DMSO)] [PDBR₃(DMSO)] / B.B. Шарутин, B.C. Сенчурин, О.К. Шарутина, А.В. Гущин // Бутлеровские сообщения. – 2012. – Т. 29, № 2. – C. 26–30.

23 Шарутин, В.В. Особенности взаимодействия тетрабромопалладийводородной кислоты с бромидами тетраорганилфосфония в различных растворителях / В.В. Шарутин, В.С. Сенчурин, О.К. Шарутина, А.В. Гущин // Бутлеровские сообщения. – 2012. – Т. 30, № 6. – С. 41–49.

24 Sharutin, V. V. Synthesis and structure of palladium complexes $[Ph_3PhCH_2P]^+$ $[PdCl_3(DMSO)]^-$ center dot DMSO, $[Ph_4P]^+[PdCl_3(DMSO)]^-$, and $[Ph_4Sb(DMSO)]^+[PdCl_3(DMSO)]^- / V.V.$ Sharutin, V.S. Senchurin, O.K. Sharutina // Russ. J. Inorg. Chem. – 2013. – V. 58, No 5. – P. 616–621.

25 Lang, C. Consecutive modular ligation as an access route to palladium containing polymers / C. Lang, K. Pahnke, C. Kiefer, A. Goldmann, P. Roesky // Polym. Chem. – 2013. – V. 4. – P. 5456–5462.

26 Крол, И.А. Химия соединений палладия(II) и платины(II) / И.А. Крол, В.М. Агре, В.К. Трунов, Е.Г. Морозова // Журнал Неорганической Химии. – 1988. – Вып. 33. – С. 144.

27 Kelly, P. Investigations into the reaction of S_4N_4 with $[PPh_4]_2[Pd_2Cl_6]$. The X-ray crystal structures of $[PPh_4]_2[Pd_2(\mu-S_2N_2)Cl_6]$ and of $[PPh_4[Pd_2(\mu-S_3N_2)Cl_4] / P$. Kelly, A. Slawin, D. Williams, D. Woollins // Polyhedron. – 1991. – V. 10, No 19. – P. 2337–2340.

28 Neumuller, B. Die Kristallstrukturen von $[Et_3PNAsPh_3]_2[Ag_2Br_4]$ und $[Et_3PNAsPh_3]_2[Pd_2Br_6] / B.$ Neumuller, S. Chitsaz, K. Dehnicke // Z. Anorg. Allg. Chem. – 2002. – V. 628. – P. 523–531.

29 Lassahn, P. Palladium(II) salts containing $[PdCl_4]^{2-}$ and $[Pd_2Cl_6]^{2-}$ ions as precatalysts for the vinyl-polymerization of norbornene – evidence for the in situ formation of PdCl₂ as the active species / P. Lassahn, V. Lozan, C. Janiak // Dalton Trans. – 2003. – V. 8. – P. 927–935.

30 Tonde, S. Isolation and characterization of an iodide bridged dimeric palladium complex in carbonylation of methanol / S. Tonde, A. Kelkar, M. Bhadbhade, R. Chaudhari // J. Organomet. Chem. -2005. - V. 690. - P. 1677-1681.

31 Zhu, Y. Bis(tetrabutylammonium) di-l-bromidobis[dibromidopalladate(II)] / Y. Zhu, L. Wang, Q. Li, Y. Wei // Acta Cryst. – 2007. – V. E63. – P. m1004–m1005.

32 Rimoldi, M. Unexpected Isomerism in " $[Pd(2,9-dimethylphenanthroline)X_2]$ " (X = Cl, Br, I) Complexes: a Neutral and an Ionic Forms Exist / M. Rimoldi, F. Ragaini, E. Gallo, F. Ferretti, P. Macchi, N. Casati // Dalton Trans. – 2012. – V. 41. – P. 3648–3654.

33 Dale, S. Bis[(diphenylsulfimido)triphenylphosphonium] di-1-bromobis[dibromopalladate(II)] / S. Dale, M. Elsedood, L. Gilby, K. Holmes, P. Kelly // Acta Cryst. – 2005. – V. C61. – P. m40–m42.

34 Arderne, C. Bis[(1,10'-biphenyl-2,2'-diyl)di-tert-butylphosphonium] di- μ -chlorido-bis[dichloridopalladate(II)] / C. Arderne, C. Holzapfel // Acta Cryst. – 2012. – V. E68. – P. m1247.

35 Naghipour, A. Synthesis, characterization and structural study of a phosphonium salt containing the $[Pd_2Br_6]^{2-}$ ion and its application as a novel, efficient and renewable heterogeneous catalyst for amination of aryl halides and the Stille cross-coupling reaction / A.Naghipour, A.Ghorbani-Choghamarani, F.Heidarizadi, B.Notash // Polyhedron. – 2015. – V. 105. – P. 18.

36Arash,G.-C.Bis[(2-methylacetatobenzyl)tri(ptolyl)phosphonium]hexabromodipalladate(II);synthesis,characterization, structural study and application as a retrievable heterogeneous catalystfortheof aryl halides and Stille cross-coupling reaction / G.-C. Arash, A. Naghipour,

F. Heidarizadi, B. Notash // Inorganica Chimica Acta. – 2016. – V. 446. – P. 97–102.

37 Шарутин, В.В. Синтез и строение комплексов палладия: [Ph₃(*cyclo*-C₃H₅)P]⁺₂[PdBr₄]²⁻, [Ph₃(*cyclo*-C₃H₅)P]⁺₂[Pd₂Br₆]²⁻, [Ph₃(*cyclo*-C₃H₅)P]⁺ [PdBr₃(DMSO)]⁻ / В.В Шарутин, О.К. Шарутина, В.С. Сенчурин, И.А. Ильченко // Координационная химия. – 2015. – Т. 41, № 7. – С. 430–436.

B.B. Шарутин, Синтез И строение 38 комплексов палладия $[Ph_3P(CH_2)_3PPh_3][PdBr_4],$ $[Ph_3P(CH_2)_3PPh_3][Pd_2Br_6] \cdot DMF$ И $[Ph_3P(CH_2)_3PPh_3][PdBr_3(DMSO-S)]_2$ / В.В. Шарутин, О.К. Шарутина, B.C. Сенчурин, И.А. Ильченко, П.В. Андреев // Журнал Общей химии. - 2017. -T. 87(149), № 1. – C. 128–133.

39 Шарутин, В.В. Синтез и строение комплекса палладия [Ph₃PCH=CHPPh₃]²⁺ [PdBr₃(dmso)]⁻ / В.В Шарутин, О.К. Шарутина, В.С. Сенчурин, И.А. Ильченко // Вестник ЮУрГУ. – 2015. – Т. 7, № 2. – С. 11–16.

40 Bruker (1998). SMART and SAINT-Plus. Versions 5.0. Data Collection and Processing Software for the SMART System. Bruker AXS Inc., Madison, Wisconsin, USA.

41 Bruker (1998). SHELXTL/PC. Versions 5.10. An Integrated System for Solving, Refining and Displaying Crystal Structures From Diffraction Data. Bruker AXS Inc., Madison, Wisconsin, USA.

42 Dolomanov, O.V. OLEX2: a complete structure solution, refinement and analysis program / O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann // J. Appl. Cryst. – 2009. – V. 42. – P. 339–344.

43 Руководство по неорганическому синтезу: в 6 т. / под ред. Г. Брауэр. – М.: Мир, 1985. – Т. 5. – 360 с.

ABSTRACT

Il'chenko I.A. Impact of a nature solvent on design of palladium- halogen-containing anions – Chelyabinsk: SUSU, E.T.–241, 2017. – 61 p., 29 fig., 16 table, 43 references, 2 app.

(cyclopropyl)(triphenyl)phosphonium Palladium dibromide, hydrobromic acid, trimethylenebis(triphenyl)phosphonium palladate(II), tetrabromo tetrabromo palladate(II), (cyclopropyl)(triphenyl)phosphonium hexabromo dipalladate(II), solvate trimethylenebis(triphenyl)phosphonium hexabromo dipalladate(II), (cyclopropyl)(triphenyl)phosphonium tribromo(dimethylsulfoxide) palladate(II), (cyclohexyl)(triphenyl)phosphonium tribromo(dimethylsulfoxide) palladate(II), solvate 1,2-vinylenebis(triphenylphosphonium) tribromo(dimethylsulfoxide) palladate(II). synthesis, X-ray analysis, structure.

The research object are complexes with mononuclear anions like: $[PdBr_4]^{2-}$ and $[PdBr_3(R_2S=O-S)]^-$, R=Me, Et and complexes with binuclear anions $[Pd_2Br_6]^{2-}$, recived by interaction of tetrabromopalladic(II) acid with bromides tetraorganilphosphonium with following recrystallization from different solvents.

The aim of the study is synthesis of ionic bromine-containing complexes of palladium(II) with phosphonium cations, research facts that affect on structure of anion, identification of obtained compounds with X-ray diffraction and IR spectroscopy.

In order to achieve the research aim the following objectives have been met:

- to compile the literature review in the research area;
- to synthesize bromine-containing complexes of palladium(II) with phosphonium cations;
- to recrystallize obtained compounds from different solvents;
- to study structure features of obtained complexes;
- to identify structures of 9 compounds by X-ray diffraction.

The field of application includes: the obtained data can be used for further development of reactivity and practical use of synthesized complexes.

приложения

ПРИЛОЖЕНИЕ А

Связь	d, Å	Угол	<i>ω</i> , град					
	комплекс І							
P(1)-C(1)	1,793(5)	C(1)–P(1)–C(21)	107,6(2)					
P(1)-C(11)	1,791(4)	C(11)–P(1)–C(1)	109,7(2)					
P(1)-C(7)	1,766(5)	C(11)–P(1)–C(21)	110,2(2)					
P(1)-C(21)	1,798(5)	C(7)-P(1)-C(1)	109,4(2)					
P(2)–C(31)	1,802(5)	C(7)–P(1)–C(11)	109,1(2)					
P(2)–C(51)	1,795(5)	C(7)–P(1)–C(21)	110,9(2)					
P(2)-C(37)	1,773(5)	C(51)–P(2)–C(31)	107,4(2)					
P(2)–C(41)	1,795(5)	C(51)–P(2)–C(41)	111,1(2)					
Pd(1)-Br(1)	2,4459(5)	C(37)–P(2)–C(31)	110,6(2)					
$Pd(1)-Br(1^1)$	2,4458(5)	C(37)–P(2)–C(51)	108,9(2)					
Pd(1)-Br(2)	2,4333(5)	C(37)–P(2)–C(41)	109,6(2)					
$Pd(1)-Br(2^1)$	2,4333(5)	C(41)–P(2)–C(31)	109,2(2)					
$Pd(2)-Br(3^2)$	2,4361(5)	$Br(1^{1})-Pd(1)-Br(1)$	180,00(2)					
Pd(2)-Br(3)	2,4362(5)	$Br(2^{1})-Pd(1)-Br(2)$	179,999(1)					
$Pd(2)-Br(4^2)$	2,4431(7)	$Br(3^2)-Pd(2)-Br(3)$	180,00(4)					
Pd(2)-Br(4)	2,4431(7)	$Br(4^{2})-Pd(2)-Br(4)$	179,999(1)					

Таблица А.1 – Основные длины связей (*d*) и валентные углы (*ω*) в структуре І

Таблица А.2 – Основные длины связей (*d*) и валентные углы (*ω*) в структуре II

Связь	d, Å	Угол	<i>w</i> , град					
	комплекс II							
1	2	3	4					
P(1)-C(1)	1,798(3)	C(1)–P(1)–C(27)	108,32(13)					
P(1)–C(11)	1,796(3)	C(11)-P(1)-C(1)	107,70(13)					
P(1)–C(21)	1,797(3)	C(11)–P(1)–C(21)	110,59(14)					
P(1)–C(27)	1,802(3)	C(11)–P(1)–C(27)	111,09(13)					
P(2)–C(29)	1,805(3)	C(21)–P(1)–C(1)	107,47(13)					
P(2)–C(31)	1,796(3)	C(21)–P(1)–C(27)	111,49(14)					
P(2)–C(41)	1,803(3)	C(31)–P(2)–C(29)	110,11(13)					
P(2)–C(51)	1,800(3)	C(31)-P(2)-C(41)	113,36(13)					
$Pd(1)-Br(1^{1})$	2,4316(3)	C(31)–P(2)–C(51)	108,67(14)					
Pd(1)-Br(1)	2,4316(3)	C(41)–P(2)–C(29)	105,24(13)					
Pd(1)– $Br(21)$	2,4447(3)	C(51)–P(2)–C(29)	111,02(13)					
Pd(1)-Br(2)	2,4447(3)	C(51)–P(2)–C(41)	108,42(13)					

1	2	3	4
Pd(2)-Br(3)	2,4377(3)	$Br(1^{1})-Pd(1)-Br(1)$	179,999(1)
$Pd(2)-Br(3^2)$	2,4377(3)	$Br(1^{1})-Pd(1)-Br(2^{1})$	92,091(12)
Pd(2)-Br(4)	2,4392(4)	$Br(1^{1})-Pd(1)-Br(2)$	87,909(12)
$Pd(2)-Br(4^{2})$	2,4393(4)	$Br(1)-Pd(1)-Br(2^{1})$	87,910(12)
_	—	Br(1)-Pd(1)-Br(2)	92,090(12)
—	—	$Br(2^{1})-Pd(1)-Br(2)$	180,000(2)
_	—	$Br(3^{2})-Pd(2)-Br(4)$	90,632(13)
_	—	$Br(3^2) - Pd(2) - Br(4^2)$	89,368(13)
—	—	$Br(3)-Pd(2)-Br(3^{2})$	180,0
_	—	Br(3)-Pd(2)-Br(4)	89,369(13)
_	—	$Br(3)-Pd(2)-Br(4^2)$	90,631(13)
_	_	$Br(4)-Pd(2)-Br(4^2)$	180,0
прес	образования симм	етрии ¹ 1-Х,-Ү,1-Z; ² -Х,-1-Ү,-2	Z

Окончание таблицы А.2

Таблица А.3 – Основные длины связей (*d*) и валентные углы (*ω*) в структуре III

Связь	d, Å	Угол	<i>ю</i> , град				
комплекс III							
$Pd(1)-Br(1^{1})$	2,4600(7)	$Br(1)-Pd(1)-Br(1^{1})$	87,43(2)				
Pd(1)-Br(1)	2,4559(7)	Br(2)-Pd(1)-Br(1)	90,86(3)				
Pd(1)-Br(2)	2,4045(8)	Br(3) - Pd(1) - Br(1)	176,28(3)				
Pd(1)-Br(3)	2,3952(7)	Br(3) - Pd(1) - Br(2)	91,98(3)				
$Br(1) - Pd(1^{1})$	2,4600(7)	C(1)–P(1)–C(21)	107,2(2)				
P(1)–C(1)	1,794(5)	C(11)-P(1)-C(1)	110,7(2)				
P(1)–C(21)	1,802(5)	C(11)–P(1)–C(21)	110,1(2)				
P(1)–C(11)	1,786(5)	C(31)-P(1)-C(1)	111,2(2)				
P(1)–C(31)	1,778(5)	C(31)–P(1)–C(21)	108,9(2)				
преобразования симметрии: 11-х, 1-у, -z							

Таблица А.4 – Основные длины связей (*d*) и валентные углы (*ω*) в структуре IV

Связь	d, Å	Угол	<i>ю</i> , град
	КО	омплекс IV	
1	2	3	4
$Pd(1^{1})-Br(1)$	2,4520(13)	C(1)–P(1)–C(11)	109,1(4)
P(1)–C(1)	1,785(8)	C(1)–P(1)–C(21)	108,1(4)
P(1)–C(11)	1,789(8)	C(1)–P(1)–C(31)	111,3(4)
P(1)–C(21)	1,793(9)	C(11)–P(1)–C(21)	111,9(4)
P(1)–C(31)	1,807(8)	C(11)–P(1)–C(31)	106,3(4)

1	2	3	4
Pd(1)-Br(1)	2,4599(13)	C(21)–P(1)–C(31)	110,2(4)
$Pd(1)-Br(1^{1})$	2,4520(13)	$Br(1^{1})-Pd(1)-Br(1)$	86,43(4)
Pd(1)-Br(2)	2,4096(13)	$Br(2)-Pd(1)-Br(1^{1})$	178,22(5)
Pd(1)– $Br(3)$	2,3936(15)	Br(2)-Pd(1)-Br(1)	91,97(5)
_	—	$Br(3)-Pd(1)-Br(1^{1})$	90,30(5)
_	—	Br(3) - Pd(1) - Br(1)	176,73(5)
_	—	Br(3) - Pd(1) - Br(2)	91,30(5)
_	_	$Pd(1^{1})-Br(1)-Pd(1)$	93,57(4)
преобразования симметрии ¹ -X,-Y,-Z; ² 1-X,+Y,1/2-Z			

Окончание таблицы А.4

Таблица А.5 – Основные длины связей (*d*) и валентные углы (*w*) в структуре V

Связь	d, Å	Угол	<i>ю</i> , град		
	комплекс V				
P(1)-C(1)	1,797(5)	C(11)-P(1)-C(1)	109,7(2)		
P(1)–C(11)	1,791(5)	C(17)-P(1)-C(1)	109,8(3)		
P(1)–C(17)	1,767(5)	C(17)–P(1)–C(11)	108,4(2)		
P(1)–C(21)	1,791(4)	C(17)–P(1)–C(21)	110,5(2)		
Pd(1)-Br(1)	2,4288(6)	C(21)-P(1)-C(1)	108,5(2)		
Pd(1)-Br(2)	2,3986(7)	C(21)–P(1)–C(11)	109,9(2)		
Pd(1)-S(1)	2,2633(13)	Br(2)-Pd(1)-Br(1)	89,07(3)		
Pd(1)-Br(3)	2,4222(7)	Br(2) - Pd(1) - Br(3)	176,61(4)		
S(1)–C(8)	1,732(9)	S(1) - Pd(1) - Br(1)	179,22(4)		
S(1)–O(1)	1,410(5)	S(1) - Pd(1) - Br(2)	90,36(4)		
S(1) - C(7)	1,706(10)	Br(3)-Pd(1)-Br(1)	89,86(3)		
преобразования симметрии: ¹ 3-х,1-у,1-z; ² 1-х,1-у,2-z					

Таблица А.6 – Основные длины связей (*d*) и валентные углы (*ω*) в структуре VI

Связь	d, Å	Угол	<i>ю</i> , град
]	комплекс VI	
1	2	3	4
P(1)-C(1)	1,796(5)	C(1)–P(1)–C(11)	110,0(2)
P(1)-C(11)	1,796(5)	C(1)–P(1)–C(21)	106,1(2)
P(1)-C(21)	1,799(5)	C(1)–P(1)–C(31)	112,0(2)
P(1)–C(31)	1,812(4)	C(11)–P(1)–C(21)	110,3(2)
Pd(1)-Br(1)	2,4278(6)	C(11)–P(1)–C(31)	107,9(2)
Pd(1)-Br(2)	2,4226(7)	C(21)–P(1)–C(31)	110,5(2)

1	2	3	4
Pd(1)-Br(3)	2,4375(7)	Br(1) - Pd(1) - Br(3)	90,15(3)
Pd(1)-S(1)	2,2478(14)	Br(2)-Pd(1)-Br(1)	89,63(3)
S(1)–O(1)	1,455(4)	Br(2) - Pd(1) - Br(3)	179,62(3)
S(1)-C(8)	1,765(7)	S(1) - Pd(1) - Br(1)	176,49(5)
S(1)–O(7)	1,766(7)	S(1) - Pd(1) - Br(2)	93,16(5)
		S(1) - Pd(1) - Br(3)	87,04(5)

Окончание таблицы А.6

Таблица А.7 – Основные длины связей (*d*) и валентные углы (*ω*) в структуре VII

Связь	d, Å	Угол	<i>ю</i> , град
	КО	мплекс VII	
P(1)-C(1)	1,779(6)	C(1)–P(1)–C(21)	107,8(3)
P(1)-C(11)	1,794(6)	C(11)–P(1)–C(21)	111,5(3)
P(1)-C(21)	1,780(6)	C(21)–P(1)–C(27)	108,4(3)
P(1)-C(27)	1,801(5)	C(31)–P(2)–C(28)	111,7(3)
P(2)–C(31)	1,791(6)	C(41)–P(2)–C(28)	108,0(3)
P(2)–C(41)	1,787(5)	Br(1)-Pd(1)-Br(2)	90,36(3)
P(2)–C(51)	1,788(5)	Br(2) - Pd(1) - Br(3)	89,10(3)
P(2)–C(28)	1,816(5)	Br(1) - Pd(1) - Br(3)	177,59(4)
C(27)–C(28)	1,288(8)	S(1) - Pd(1) - Br(1)	91,26(5)
Pd(1)– $Br(1)$	2,4231(9)	S(1) - Pd(1) - Br(3)	89,24(5)
Pd(1)– $Br(2)$	2,4486(9)	S(1) - Pd(1) - Br(2)	178,11(6)
Pd(1)– $Br(3)$	2,4317(9)	Br(4)-Pd(2)-Br(6)	89,27(3)
Pd(1)-S(1)	2,2666(18)	Br(5)-Pd(2)-Br(6)	90,45(3)
Pd(2)– $Br(4)$	2,4200(8)	Br(4)-Pd(2)-Br(5)	177,82(3)
Pd(2)-Br(5)	2,4341(8)	S(2) - Pd(2) - Br(4)	90,12(5)
Pd(2)-Br(6)	2,4433(8)	S(2) - Pd(2) - Br(5)	90,28(5)
Pd(2)–S(2)	2,2634(17)	S(2)-Pd(2)-Br(2)	176,89(5)

Таблица А.8 – Основные длины связей (*d*) и валентные углы (*w*) в структуре VIII

Связь	d, Å	Угол	<i>ю</i> , град
	компле	екс VIII	
1	2	3	4
P(1)-C(1)	1.805(11)	C(1)–P(1)–C(27)	105.8(5)
P(1)-C(27)	1.827(8)	C(2)-P(1)-C(1)	110.0(5)
P(1)-C(21)	1.795(11)	C(11)-P(1)-C(1)	111.7(5)
P(1)-C(11)	1.775(10)	C(11)-P(1)-C(27)	106.4(5)
P(2)-C(29)	1.812(9)	C(11)-P(1)-C(21)	113.0(5)

1	2	3	4
P(2)-C(31)	1.807(9)	C(1)-P(1)-C(27)	105.8(5)
P(2)-C(51)	1.791(11)	C(21)-P(1)-C(27)	107.3(5)
Pd(2)-Br(5)	2.4437(17)	C(51) - P(2) - C(29)	111.2(5)
Pd(2)-Br(6)	2.422(2)	C(51) - P(2) - C(41)	107.7(5)
Pd(2)-Br(4)	2.4333(17)	C(51) - P(2) - C(31)	109.4(5)
Pd(1)-S(1)	2.256(3)	C(31) - P(2) - C(29)	112.6(4)
Pd(1)-Br(1)	2.4223(16)	C(31) - P(2) - C(41)	108.4(5)
Pd(1)-Br(2)	2.4449(17)	Br(1) - Pd(1) - Br(2)	90.29(6)
Pd(1)-Br(3)	2.4499(15)	Br(1) - Pd(1) - Br(3)	175.62(7)
Pd(2)-S(2)	2.242(3)	Br(2) - Pd(1) - Br(3)	89.86(6)
		S(1) - Pd(1) - Br(1)	92.88(10)
		S(1) - Pd(1) - Br(2)	176.82(11)
	—	S(1) - Pd(1) - Br(3)	86.98(10)
		Br(4) - Pd(2) - Br(5)	90.45(6)
		Br(6) - Pd(2) - Br(5)	89.55(7)
		Br(6) - Pd(2) - Br(4)	177.65(10)
		S(2) - Pd(2) - Br(5)	177.64(10)
		S(2) - Pd(2) - Br(6)	89.10(11)
		S(2) - Pd(2) - Br(4)	90.81(11)

Окончание таблицы А.8

Таблица А.9 – Кристаллографические данные, параметры эксперимента и уточнения структур I – III

Параметр	Значение		
	Ι	II	III
1	2	3	4
М	1032,72	992,66	649,47
Т, К	296(2)	273,15	296(2)
Сингония	моноклинная	триклинная	моноклинная
Пр. Группа	$P2_1/n$	P-1	$P2_1/n$
<i>a</i> , Å	16,9473(7)	9,8357(4)	9,8998(3)
b, Å	14,6610(6)	11,4425(5)	13,5984(5)
<i>c</i> , Å	18,2161(8)	18,5413(6)	16,5995(6)
α , град	90,00	105,291(2)	90,00
β , град	117,0800(10)	96,333(2)	94,0650(10)
<i>ү</i> , град	90,00	109,470(2)	90,00
$V, Å^3$	4029,9(3)	1852,13(13)	2229,03(13)
Z	4	2	4
ρ (выч.), г/см ³	1,702	1,780	1,935

1	2	3	4
μ , mm ⁻¹	4,535	4,930	6,285
F(000)	2032,0	972,0	1248,0
Размер кристалла, мм	0,47 × 0,38 × 0,17	$0,22 \times 0,17 \times 0,05$	0,29 × 0,28 × 0,12
Область сбора данных по θ, град	6,08–52,88°	5,74–53,56°	5,54–53,6°
Интервалы	$-21 \le h \le 21$,	$-12 \le h \le 12$,	$-12 \le h \le 12$,
индексов	$-18 \le k \le 18,$	$-14 \le k \le 14$,	$-17 \le k \le 17$,
отражений	$-22 \le l \le 22$	$-23 \le l \le 23$	$-21 \le 1 \le 21$
Измерено отражений	73900	44205	41015
Независимых отражений	8271 ($R_{int} = 0,0636$)	$7891[R_{int} = 0,0456, R_{sigma} = 0,0306]$	4755 ($R_{\rm int} = 0,0384$)
Переменных уточнения	445	7891/0/418	235
GOOF	1,017	1,012	1,043
R-факторы по $F^2 > 2\sigma(F^2)$	$R_1 = 0,0433,$ $wR_2 = 0,1063$	$R_1 = 0,0284,$ wR ₂ = 0,0609	$R_1 = 0,0425,$ $wR_2 = 0,1155$
<i>R</i> -факторы по всем	$R_1 = 0,0661,$	$R_1 = 0,0455,$	$R_1 = 0,0602,$
отражениям	$wR_2 = 0,1184$	$wR_2 = 0,0669$	$wR_2 = 0,1303$

Окончание таблицы А.9

Таблица А.10 – Кристаллографические данные, параметры эксперимента и уточнения структур IV – VI

Параметр	Значение		
	IV	V	VI
1	2	3	4
М	629,44	727,60	769,68
Т, К	273,15	296(2)	273,15
Сингония	моноклинная	триклинная	моноклинная
Пр. Группа	C2/c	P-1	$P2_1/c$
a, Å	16,4017(10)	7,8468(3)	13,3310(6)
b, Å	12,2413(7)	11,9501(5)	16,0058(7)
<i>c</i> , Å	22,6198(15)	14,4043(5)	13,9440(5)
lpha, град	90,00	85,1730(10)	90,00
eta, град	96,342(2)	88,6780(10)	104,0740(10)
γ, град	90,00	78,0520(10)	90,00
$V, Å^3$	4513,8(5)	1316,72(9)	2886,0(2)

Окончание таблицы А.10

1	2	3	4
Z	8	2	4
<i>р</i> (выч.), г/см ³	1,852	1,835	1,771
μ , mm ⁻¹	6,204	5,410	4,942
F(000)	2408,0	708,0	1512,0
Размер кристалла, мм	0,42 × 0,33 ×0,21	0,75 × 0,56 ×0,47	0,66 × 0,26 ×0,15
Область сбора данных по θ, град	5,84 – 52,88°	6,24 – 52,98°	6,08 – 52,84°
Интервалы	$-20 \le h \le 20$,	$-9 \le h \le 9,$	$-16 \le h \le 16$,
индексов	$-15 \le k \le 15$,	$-14 \le k \le 14,$	$-20 \le k \le 20,$
отражений	$-28 \le l \le 28$	$-17 \le l \le 17$	$-15 \le l \le 16$
Измерено отражений	30466	17215	36703
Независимых	4623	/030	557/
отражений	$[R_{int} = 0,0563, R_{sigma} = 0,0335]$	$(R_{\rm int} = 0.0270)$	[R(int) = 0,0378]
Переменных	1623/0/222	273	5574/0/300
уточнения	4023/0/222	215	5574/0/500
GOOF	1,061	1,034	1,024
<i>R</i> -факторы по	$R_1 = 0,0747,$	$R_1 = 0,0423,$	$R_1 = 0,0408, wR_2 =$
$F^2 > 2\sigma(F^2)$	$wR_2 = 0,2301$	$wR_2 = 0,1059$	0,0863
<i>R</i> -факторы по всем	$R_1 = 0,0970,$	$R_1 = 0,0525,$	$R_1 = 0,0583, wR_2 =$
отражениям	$wR_2 = 0,2570$	$wR_2 = 0,1132$	0,0951
Остаточная			
электронная	6.54/-0.82	0 90/-1 11	1.69/-1.28
плотность	0,01/ 0,02	0,20, 1,11	-,027 1,=0
$(min/max), e/A^3$			

Таблица А.11 – Кристаллографические данные, параметры эксперимента и уточнения для комплекса VII

Параметр	Значение
M	1477,22
Т, К	296(2)
Сингония	моноклинная
Пр. Группа	$P2_1/c$
a, Å	22,4176(7)
b, Å	9,5016(2)
c, Å	26,2637(8)
α, град	90,00

Окончание таблицы А.11	
Параметр	Значение
β, град	109,5400(10)
ү, град	90,00
V, Å ³	5272,1(3)
Z	4
ρ(выч.), г/см ³	1,861
μ, мм ⁻¹	5,445
F(000)	2872,0
F(000)	2872,0
Форма кристалла (размер, мм)	обломок (0,33 $ imes$ 0,14 $ imes$ 0,12)
Область сбора данных по θ , град	5,96–52,84
	$-28 \le h \le 27$
Интервалы индексов отражений	$-11 \le k \le 11$
	$-32 \le l \le 32$
Измерено отражений	93694
Независимых отражений	10790
Переменных уточнения	547
GOOF	1,026
<i>R-</i> факторы по	$R_1 = 0,0481,$
$F^2 > 2\sigma(F^2)$	$wR_2 = 0,1333$
<i>R</i> -факторы по всем отражениям	$R_1 = 0,0872,$
	$wR_2 = 0,1571$
Остаточная электронная плотность (min/max), e/A ³	2,53/-1,66

Таблица А.12 – Кристаллографические данные, параметры эксперимента и уточнения для комплекса VIII

Параметр	Значение
М	1415,13
Т, К	273.15
Сингония	ромбическая
Пр. Группа	P2 ₁ 2 ₁ 2 ₁
a, Å	9.2443(2)
b, Å	23.0042(7)
c, Å	23.5595(7)
α, град	90.00
β, град	90.00
ү, град	90.00
$V, Å^3$	5010.1(2)
Z	4

Параметр	Значение
ρ(выч.), г/см ³	1.876
μ, мм ⁻¹	5.684
F(000)	2744.0
Форма кристалла (размер, мм)	0.75 imes 0.45 imes 0.15
Область сбора данных по θ , град	5.88 –52.06°
Интервалы индексов отражений	$-11 \le h \le 9,$
	$-27 \le k \le 26$,
	$-28 \le 1 \le 29$
Измерено отражений	25559
Независимых отражений	9646
Переменных уточнения	518
GOOF	1.038
<i>R</i> -факторы по	P = 0.0(92 - 2) = 0.1420
$F^2 > 2\sigma(F^2)$	$R_1 = 0.0683, WR_2 = 0.1439$
<i>R</i> -факторы по всем отражениям	$R_1 = 0.1003, wR_2 = 0.1582$
Остаточная электронная плотность	1.53/-1.53
$(\min/\max), e/A^3$	

Окончание таблицы А.12

ПРИЛОЖЕНИЕ Б

Рисунок Б.2 – ИК-спектр комплекса II

Рисунок Б.3 – ИК-спектр комплекса III

Рисунок Б.4 – ИК-спектр комплекса IV

Рисунок Б.8 – ИК-спектр комплекса Х

Рисунок Б.9 – ИК-спектр комплекса XI