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1. INTRODUCTION 
Consider the following logistic differential equation which is widely used in Population Dynamics 

= 푟푁 1 − .  
Here N(t) is the size of a population, r ≥ 0 is an intrinsic growth rate, K is a carrying capacity or satura-
tion level. A variety of nonlinear differential equations has been developed to construct numerous mod-
els of Mathematical Biology [1–3]. 

In order to model processes in nature and engineering it is frequently required to know system states 
in the past. Depending on the phenomena under study the after-effects represent duration of some hidden 
processes. In general, DDE’s exhibit much more complicated dynamics than ODE’s since a time lag can 
change a stable equilibrium into an unstable one and make populations fluctuate, they provide a richer 
mathematical framework (compared with ordinary differential equations) for the analysis of biosystems 
dynamics. 

Introduction of complex models of Population Dynamics, based on nonlinear DDE’s, has received 
much attention in the literature in recent years. 

The application of delay equations to biomodelling is in many cases associated with studies of dy-
namic phenomena like oscillations, bifurcations, and chaotic behavior. Time delays represent an addi-
tional level of complexity that can be incorporated in a more detailed analysis of a particular system.  

Delay logistic equation 
= 푟푁 1 − .      (1) 

appeared in 1948 in Hutchinson’s paper [4]. Here Nτ = N(t – τ), τ > 0. 
Autonomous equation (1) has been extensively investigated by numerous authors. The first paper on 

the oscillation of a nonautonomous logistic delay differential equation was published in [5]. Since this 
publication, the oscillation of the logistic DDE as well as its generalizations were studied by many ma-
thematicians. Some of these results can be found in the monographs [6–8]. 

It is a well-known fact, that the traditional logistic model in some cases produces artificially com-
plex dynamics, therefore it would be reasonable to get away from the specific logistic form in studying 
population dynamics and use more general classes of growth models. 

For example, in order to drop an unnatural symmetry of the logistic curve, we consider the modified 
logistic form of Pella and Tomlinson [9], [10] or Richards’ growth equation with delay 

= 푟푁 1 − .      (2) 
According to [9], 0 < γ < 1 for invertebrate populations (examples of invertebrates are insects, worms, 
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starfish, sponges, squid, plankton, crustaceans, and mollusks), and γ ≥ 1 for the vertebrate populations 
(these include amphibians, birds, fish, mammals, and reptiles). 

In [11] the authors considered Eq. (2) with several delays. They obtained conditions for existence of 
positive solutions and studied so-called long time average stability. In this paper we obtain oscillation 
and local stability results for nonautonomous Eq. (2) with several delays. 

 
2. PRELIMINARIES 
Our object is a scalar nonlinear delay differential equation 
푁̇(푡) = 푟(푡)푁(푡) 푎 − ∑ 푏 푁 푔 (푡) , 푡 ≥ 0,      (3) 

under the following conditions: 
(a1) r(t) is a Lebesgue measurable essentially bounded on [0, ∞) function, r(t) ≥ 0. 
(a2) gk : [0, ∞) → R are Lebesgue measurable functions, gk(t) ≤ t, limt→∞ gk(t) = ∞, k = 1, …, m. 
(a3) a > 0, bk > 0, γ > 0. 
Together with (3) we consider for each t0 ≥ 0 an initial value problem 
푁̇(푡) = 푟(푡)푁(푡) 푎 − ∑ 푏 푁 푔 (푡) , 푡 ≥ 푡 ,      (4) 
푁(푡) =  휑(푡), 푡 < 푡 , 푁(푡 ) =  푁 .                 (5) 
We also assume that the following hypothesis holds 
(a4) φ : (–∞, t0) → R is a Borel measurable bounded function, φ(t) ≥ 0, N0 > 0. 
Definition. A locally absolutely continuous function x : R → R is called a solution of problem (4), 

(5), if it satisfies equation (4) for almost all t ∈ [t0, ∞) and equalities (5) for t ≤ t0. 
Lemma 1 [11] Suppose Conds.(a1)–(a4) hold for equation (3). Then the problem (4), (5) has  

a unique positive solution N(t), t ≥ t0. 
 
3. OSCILLATION CRITERIA 
Definition. We say that a function y(t) is nonoscillatory about a number K if y(t) – K is eventually 

positive or eventually negative. Otherwise y(t) is oscillatory about K. 

Eq. (3) has a positive equilibrium 푁∗ = ∑ . In this section we study oscillation of solutions of 

(3) about N *. 
We will present here some lemmas which will be used in this section. 
Consider the linear delay differential equation 
푥̇(푡) +  ∑ 푟 (푡)푥 ℎ (푡) = 0, 푡 ≥ 0,      (6) 

and the differential inequalities 
푥̇(푡) +  ∑ 푟 (푡)푥 ℎ (푡) ≤ 0, 푡 ≥ 0,      (7) 
푥̇(푡) +  ∑ 푟 (푡)푥 ℎ (푡) ≥ 0, 푡 ≥ 0.      (8) 
Lemma 2 [6] Let (a1)–(a2) hold for the parameters of Eq. (6). Then the following statements are 

equivalent: 
1. There exists a non-oscillatory solution of equation (6). 
2. There exists an eventually positive solution of the inequality (7). 
3. There exists an eventually negative solution of the inequality (8). 
Lemma 3 [6] Let (a1)–(a2) hold for the parameters of Eq. (6). If 
lim →∞ 푖푛푓 ∫ ∑ 푟 (푠)푑푠 > 1 푒⁄ ,( )       (9) 

then all the solutions of equation (6) are oscillatory. 
Theorem 1 Suppose (a1)–(a4) hold and 
∫ 푟(푠)푑푠 = ∞.∞     (10) 
Then for every nonoscillatory solution N(t) of (3) we have 
lim →∞ 푁(푡) = 푁∗.    (11) 
Proof. After a substitution 
푁(푡) = 푁∗(1 + 푥(푡))    (12) 

Eq. (3) reduced to the following equation 
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푥̇(푡) =  −푎푟(푡) 1 + 푥(푡) ∑ 퐵 1 + 푥 푔 (푡) − 1 , 푡 ≥ 0,    (13) 
where 

퐵 = ∑ .    (14) 

Condition (a3) implies that Bk > 0, ∑ 퐵 = 1. 
The zero solution is an equilibrium of Eq. (13), which suits to the equilibrium N * of Eq. (3). 
By Lemma 1 any solution of (3) is positive. Then for any solution of (13) we have 1 + x(t) > 0.  

To prove the theorem we have to show that for every nonoscillatory about zero solution of (13) we have 
lim →∞ 푥(푡) = 0.    (15) 

Suppose x(t) is a nonoscillatory solution of (13). Without loss of generality we can assume that x(t) > 0,  
t ≥ 0. Hence 

∑ 퐵 (1 + 푥 푔 (푡) ) − 1 ≥  (∑ 퐵 ) − 1 = 0.  
Then 푥̇(푡)  ≤  0 and hence there exists 

lim →∞ 푥(푡) = 푙.  
Suppose l > 0. Equality (13) implies 

푥(푡) = 푥(0) − 푎 ∫ 푟(푠)(1 + 푥(푠))[(∑ 퐵 (1 + 푥(푔 (푠)))) − 1]푑푠.    (16) 
If t → +∞ then the right hand side of (16) tends to –∞, the left hand side has a finite limit. This contra-
diction proves the theorem. 

Theorem 2 Suppose conditions (a1)–(a4) and (10) hold, γ > 1 and there exists ϵ > 0 such that all 
solutions of linear differential equation 

푦̇(푡) = −푎훾푟(푡)(1 − 휖) ∑ 퐵 푦(푔 (푡))    (17) 
are oscillatory, were Bk are denoted by (14). 

Then all solutions of (3) are oscillatory about N *. 
Proof. It is sufficient to prove, that all solutions of (13) are oscillatory about zero. Suppose the exists  

a nonoscillatory solution x of (13). Without loss of generality we can assume, that x(t) > 0, t ≥ 0. Theo-
rem 1 implies, that for some t0 > 0 and for t ≥ t0 we have 0 < x(t) < ϵ. 

Consider the following function 
푓(푢 , . . . , 푢 ) =  (∑ 퐵 (1 + 푢 )) − 1 − 훾 ∑ 퐵 푢 .  

We have 
= 훾(∑ 퐵 (1 + 푢 )) 퐵 − 훾퐵 ,  

= 훾(훾 − 1)(∑ 퐵 (1 + 푢 )) 퐵 퐵 .  

Hence 
푓(0, . . . ,0) = 0, (0, . . . ,0) = 0, (0, . . . ,0) =  훾(훾 − 1)퐵 퐵 .  

Taylor’s Formula implies that 
푓(푢 , . . . , 푢 ) =  훾(훾 − 1) ∑ ∑ 퐵 퐵 푢 푢 + 표(∆푢),  

where 

∆푢 = ∑ 푢 , lim →
( ) = 0.  

Then for uk ≥ 0, k = 1, ..., m and ∆u sufficiently small f(u1, ..., um) ≥ 0. Hence for ϵ small enough we have 
푥̇(푡) ≤ −푎훾푟(푡)(1 − 휖) ∑ 퐵 푥 푔 (푠) , 푡 ≥ 0.  

Lemma 2 implies now that Eq. (17) has a nonoscillatory solution. We have a contradiction with our as-
sumption. The theorem is proven. 

Corollary 2.1 Suppose conditions (a1)–(a4) and (10) hold, γ > 1, 
lim →∞ inf 푎훾 ∫ 푟(푠)푑푠( ) > 1 푒⁄ .    (18) 

Then all solutions of (3) are oscillatory about N *. 
Proof Inequality (18) implies, that for some ϵ > 0 
lim →∞ inf 푎훾 (1 − 휖) ∫ ∑ 퐵 푟(푠)푑푠( ) > 1 푒⁄ .  

Lemma 3 and Theorem 2 imply this corollary. 
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4. ASYMPTOTIC STABILITY 
Consider a general nonlinear delay differential equation 
푥̇(푡) =  푓(푡, 푥(푡), 푥(푔 (푡)), … , 푥(푔 (푡))), 푡 ≥ 0,    (19) 

with the initial function and the initial value 
푥(푡) =  휑(푡), 푡 < 0, 푥(0) = 푥 ,    (20) 

under the following conditions: 
(b1) f(t, u0, u1, ..., um) satisfies Caratheodory conditions: it is Lebesgue measurable in the first argu-

ment and continuous in other arguments, f(t, 0, ..., 0) = K; 
(b2) gk(t) are Lebesgue measurable functions, 
푔 (푡) ≤ 푡, sup [푡 − 푔 (푡)] < ∞;  
(b3) φ : (–∞, 0) → R is a Borel measurable bounded function. 
We will assume that the initial value problem (19)–(20) has a unique global solution x(t), t ≥ 0. 
Definition. We will say that the equilibrium K of Eq. (19) is (locally) stable, if for any ϵ > 0 there 

exists σ > 0 such that for every initial conditions |x(0)| < σ0, |φ(t)| < σ0, σ0 ≤ σ, for the solution x(t) of 
(19)–(20) we have |x(t) – K| < ϵ, t ≥ 0. 

If, in addition, lim →∞(푥(푡) − 퐾) = 0, then the equilibrium K of Eq. (19) is (locally) asymptotically 
stable. 

Suppose there exist M > 0, γ > 0 such that 
|푥(푡) − 퐾| ≤ 푀푒푥푝{−훾푡}(|푥(0)| + sup |휑(푡)|)  

for all x(0) and φ(t) such that |푥(0)| + sup |휑(푡)| is sufficiently small. Then we will say that  
the equilibrium K of Eq. (19) is exponentially stable. 

Lemma 4 [12] Suppose (a1), (b2), (b3) hold for linear equation (6) and 
lim →∞ 푠푢푝 ∑ 푟 (푡) 푡 − ℎ (푡) < 1.  

Then Eq. (6) is exponentially stable. 
Lemma 5 [13], [14] Suppose that (b1)–(b3) hold, for sufficiently small u if |uk| ≤ u, k = 0, ..., m then 
푓(푡, 푢 , … , 푢 ) − ∑ (푡, 퐾, … , 퐾)푢 = 표(푢),  

where lim →
( ) = 0. 

If the linear equation 
푦̇(푡) =  ∑ (푡, 0, … ,0)푦(푔 (푡))  

is exponentially stable, then the equilibrium K of Eq. (19) is locally asymptotically stable. 
Theorem 3 Suppose that for equation (3) Conds. (a1), (a3), (b2), (b3) hold and 
lim →∞ sup 푎훾푟(푡) ∑ 퐵 푡 − 푔 (푡) < 1.    (21) 

Then equilibrium N * of Eq.(3) is asymptotically stable. 
Proof. A substitution N(t) = N *(1 + x(t)) implies that equilibrium N * of Eq. (3) is asymptotically 

stable if and only if the zero solution of (13) is asymptotically stable. 
Lemma 4 and inequality (21) imply that linear equation 
푥̇(푡) = −푎훾푟(푡) ∑ 퐵 푥 푔 (푡)   

is exponentially stable. Lemma 5 implies now that the zero solution of (13) is asymptotically stable. 
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