ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОЦЕССА ПРЕССОВАНИЯ ТРУБ ЗА СЧЕТ СНИЖЕНИЯ УСИЛИЯ ПРЕССОВАНИЯ

Я.И. Космацкий

В работе представлены результаты моделирование процесса прессования труб из стали марки 12X18H10T размерами $45,0 \times 4,0$ мм, с применением метода конечных элементов, реализованного в САПР QForm 3D, при использовании пресс-шайб существующей и отличной профилировок. Показано снижение величины пикового усилия прессования на 13,5 % при использовании пресс-шайбы разработанной профилировки. Приведены результаты опытно-промышленного опробования процесса прессования труб с применением оригинальной конструкции прессшайбы в условиях Волжского трубного завода. Показано снижение величины пикового усилия прессования до 3,5 % при использовании пресс-шайбы разработанной профилировки.

Ключевые слова: процесс прессования труб, моделирование, профилировка инструмента, пресс-шайба, технологические параметры, усилие прессования, опытно-промышленная партия.

В трудах отечественных и зарубежных ученых, занятых в области прессования, представлено немалое количество технических решений, направленных на снижение энергозатрат в процессе прессования.

В свою очередь, в работах [1–4] продемонстрирована эффективность возможной реализации способа прессования труб с применением аккумулирующего устройства [5]. Однако, применение нового технического решения [5], обеспечивающего снижение усилия прессования в действующих промышленных условиях, потребовало бы определенных финансовых затрат, обусловленных, главным образом, технологическими простоями производства в период модернизации существующих прессовых линий. В связи с чем, было принято решение о целесообразности проведения исследования

раздельного влияния отличной профилировки пресс-шайбы на усилие прессования и последующего опытно-промышленного опробования.

Так на первом этапе проводилось моделирование процесса прессования труб из стали марки 12X18H10T размерами $45,0 \times 4,0$ мм, с применением метода конечных элементов, реализованного в САПР QForm 3D [6] при использовании пресс-шайб существующей (рис. 1a) [7] и разработанной конструкции (рис. 1б).

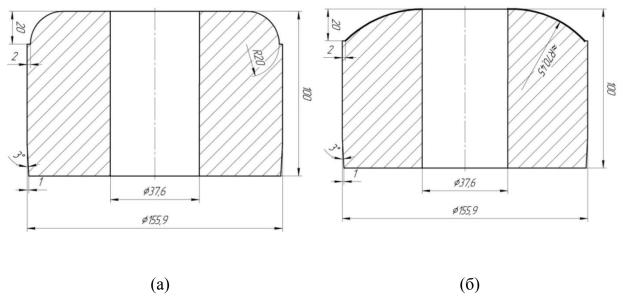


Рис. 1. Пресс-шайба: (а) – существующая конструкция [4]; (б) – разработанная конструкции

Важно отметить, что исходные данные для моделирования процесса назначались исходя из реальных условий процесса прессования труб в условиях ТПЦ-2 АО «ВТЗ». Так, в табл. 1 представлены исходные данные для моделирования процесса.

По результатам проведенного моделирования процесса прессования труб с применением пресс-шайбы существующей и разработанной конструкции получены зависимости усилия прессования от времени рабочего цикла процесса.

Сравнительная диаграмма изменения усилия прессования в течение одного рабочего цикла процесса представлена на рис. 2.

В соответствии с представленной на рис. 2 графической зависимостью, подтверждается уменьшение значения пикового усилия прессования при использовании пресс-шайбы разработанной конструкции (рис. 1б) и его более позднее возникновение, вызванное дополнительным объемом свободного пространства, образованного профилем рабочей поверхно-

сти пресс-шайбы и внутренней поверхностью контейнера. В остальном характер изменения усилия прессования в обоих случаях схож.

Таблица 1 Исходные данные для моделирования процесса

Размеры готовой трубы, мм	45,0 × 4,0
Скорость прессования, мм/с	200
Коэффициент трения на смазываемых поверхностях	0,02
Материал гильзы	12X18H10T
Сопротивление деформации материала гильзы, МПа	210
Диаметр гильзы, мм	152
Длина гильзы, мм	400
Диаметр осевого отверстия (после экспандирования), мм	52
Диаметр матрицы, мм	46,1
Диаметр пресс-иглы, мм	37,6
Диаметр контейнера, мм	156
Температура нагрева гильзы, °С	1150
Температура разогрева инструмента °С	500
Материал рабочего инструмента	4Х5МФС

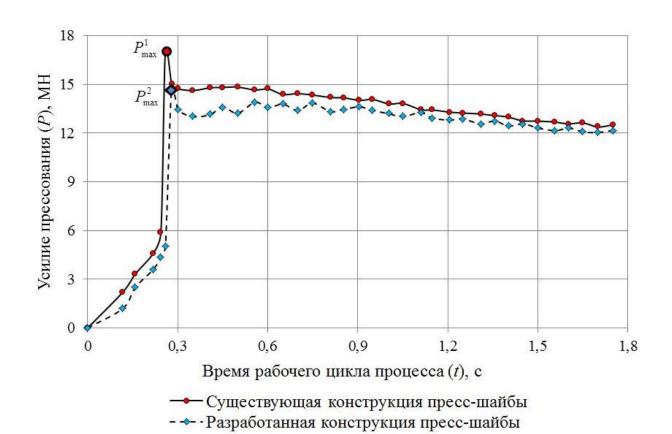


Рис. 2. Графические зависимости изменения усилия прессования в процессе одного рабочего цикла: $P_{\max}^1 = 17,5 \,\mathrm{MH}, \; P_{\max}^2 = 14,7 \,\mathrm{MH}$

Вместе с этим, полезно определить стадии процесса, соответствующие возникновению пикового усилия прессования в рассматриваемых случаях. Так, на рис. З представлены изображения модели процесса прессования труб с применением пресс-шайбы известной профилировки [7], где (t_1) — завершение процесса распрессовки гильзы; (t_2) — начало истечения металла заготовки; (t_3) — прохождение металла заготовки через канал матрицы (начало установившейся стадии).

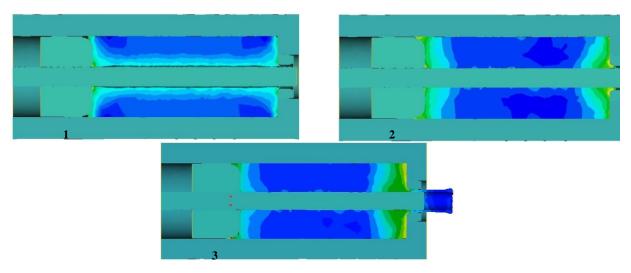


Рис. 3. Модель процесса прессования труб с применением существующей конструкции пресс-шайбы

Пиковое усилие прессования достигается в начальной стадии процесса, после распрессовки гильзы в контейнере, при начале истечения металла в отверстие матрицы, что соответствует моменту времени (t_2) (через 0,25 с после начала движения пресс-шайбы). Значение усилия прессования в установившейся стадии определяется интервалом значений от 12,5 до 14,5 MH.

На рисунке 4 представлены изображения модели процесса прессования труб с применением спроектированной конструкции пресс-шайбы (рис. 1б).

В рассматриваемом случае, при использовании пресс-шайбы отличной профилировки, пиковое усилие прессования достигается в начальной стадии процесса, через 0,29 с после начала движения пресс-шайбы. Больший период времени до достижения пикового усилия, в сравнении с процессом прессования при использовании пресс-шайбы существующей конструкции, вероятно, обусловлен присутствием эффекта обратного течения металла при распрессовке гильзы в контейнере и заполнении металлом полости, образуемой профилем пресс-шайбы и контейнером. Последнее дос-

таточно хорошо корреспондируется с изобретением [5], обеспечивающим аккумулирование энергии, проиллюстрированном в работах [2–4] на примере использования пружин сжатия в процессе прессования. При этом, как показано на рис. 2, пиковое усилие прессования на 13,5 % ниже значения, полученного при предыдущем моделировании. Значение усилия прессования в установившейся стадии определяется интервалом значений от 12,1 до 13,8 МН, что на 0,7 МН ниже уровня полученного при процессе с использованием пресс-шайбы существующей конструкции.

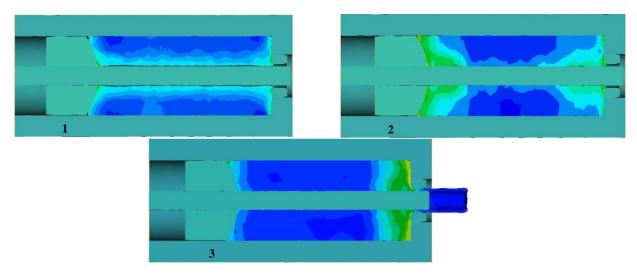


Рис. 4. Модель процесса прессования труб с применением разработанной конструкции пресс-шайбы

Снижение усилия прессования при использовании пресс-шайбы разработанной профилировки может объясняться следующим. Характер локализации напряжений, при использовании существующей и разработанной конструкции пресс-шайб, схож. Однако в последнем случаем, по длине заготовки происходит более интенсивная деформация металла. Уровень значений напряжения, на указанном участке, выше на 30–40 %, соответственно деформация происходит более равномерно, без образования четких границ перехода значений напряжения на более высокие, к очагу деформации и пресс-шайбе.

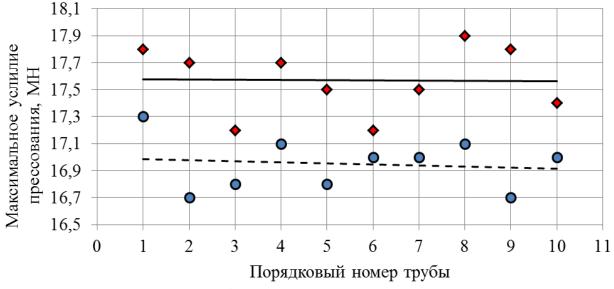
Полученный положительный результат теоретического исследования процесса прессования труб с применением отличной профилировки прессшайбы послужил основанием для реализации второго этапа работы по изготовлению опытно-промышленной партии горячепрессованных труб размерами $45 \times 4,0$ мм из стали марки 08X18H10T с использованием пресс-шайбы новой конструкции.

Важно отметить, что работа выполнялась в соответствии Программой изготовления опытно-промышленных партий труб с использованием новых технических решений, обеспечивающих снижение пикового усилия, утвержденной ОАО «РосНИТИ» и АО «ВТЗ» 18.10.2015 г., в условиях ТПЦ-2 на прессовой линии усилием 20 МН.

Перед началом работ производился визуальный и инструментальный контроль пресс-шайб новой конструкции, выполненных в соответствии с эскизами, представленными на рисунке 1б.

Подготовка заготовок осуществлялась в соответствии с требованиями Технологической инструкции [7] по схеме для нержавеющих марок сталей, т.е. сверление центрального осевого отверстия диаметром 25,0 мм, заключительные операции обработки торцевой поверхности (черновая и чистовая механическая обработка конуса и исполнение радиуса).

Расчетные значения технологических параметров процесса прессования труб размерами 45×4.0 мм из стали марки 08X18H10T с использованием пресс-шайб существующей и новой конструкций представлены в табл. 2.


Таблица 2 Расчетные значения технологических параметров прессования труб размерами 45×4.0 мм из стали марки 08X18H10T

Конструкция пресс-шайбы	Существующая	Новая	
Размеры трубы, мм	Ø 45,0 × 4,0		
Размеры заготовки (диаметр сверления), мм	Ø 145 × 520 (C _B . Ø 25)		
Диаметр втулки контейнера при экспандировании, мм	152		
Диаметр втулки контейнера при прессовании, мм	156		
Диаметр экспандера, мм	45		
Диаметр матрицы, мм	46,4		
Диаметр пресс-иглы, мм	37,4		
Температура заготовки на столе стеклосмазки перед экспандированием, °С	1080–1140		
Температура гильз на столе стеклосмазки перед прессованием, °C	1140–1170		
Скорость экспандирования, мм/с	220,0–250,0		
Скорость пресс-штемпеля, мм/с	150,0–180,0		
Коэффициент вытяжки при экспандировании	1,04		
Коэффициент вытяжки при прессовании	33,57		
*Модуль сопротивления деформации, МПа	190,0–210,0		
Пиковое усилие прессования, МН	16,5–17,5	14,4–15,1	
Установившееся усилие прессования, МН	12,6–13,5	12,0–12,8	
Длина труб, мм	14 900	15 100	
Примечание – расчет молуля сопротивления металла горячей пластической			

Примечание — расчет модуля сопротивления металла горячей пластической деформации выполнялся при использовании соответствующего Программного комплекса [8].

Для оценки влияния профилировки пресс-шайб на значение пикового усилия прессования изготавливалось 20 труб из стали марки 08X18H10T: 10 шт. — с использованием пресс-шайбы существующей конструкции; 10 шт. — с использованием пресс-шайбы новой конструкции (рис. 1б).

Сравнительная диаграмма значений пикового усилия прессования для труб, отпрессованных с использованием пресс-шайбы существующей и новой конструкции, представлена на рис. 5.

- Пресс-шайба существующей конструкции
- Пресс-шайба новой конструкции

Рис. 5. Сравнительная диаграмма значений пикового усилия прессованиям в зависимости от применяемой профилировки пресс-шайбы

В соответствии с представленными на рисунке 5 фактическими значениями пиковых усилий прессования, можно заключить, что использование пресс-шайбы новой конструкции обеспечивает снижение величины пикового усилия прессования на 1,2–3,5 %.

Таким образом, по совокупности полученных результатов экспериментального исследования процесса прессования труб с использованием, в том числе, аккумулирующего устройства, представленных в работе [2], компьютерного моделирования с применением оригинальной конструкции пресс-шайбы, и опытно-промышленного опробования в условиях АО «ВТЗ», можно сделать вывод об эффективности применения пресс-шайб новой профилировки для изготовления труб методом прессования.

Библиографический список

- 1. Космацкий, Я.И. Совершенствование процесса инерционной выпрессовки пресс-остатка / Я.И. Космацкий // Наука ЮУрГУ: материалы 65-й научной конференции. Секции технических наук. Челябинск: Издательский центр ЮУрГУ, 2013.-T.2.-C.11-14.
- 2. Космацкий, Я.И. Экспериментальное исследование процесса инерционного прессования труб / Я.И. Космацкий, Н.В. Фокин // Вестник ЮУрГУ. Серия «Металлургия». -2014.-T. 14.- № 2.-C. 73-77.
- 3. Космацкий, Я.И. Моделирование процесса прессования труб с использованием устройства инерционной выпрессовки пресс-остатка / Я.И. Космацкий, А.В. Выдрин, Б.В. Баричко и др. // Сталь. 2014. Вып. 11. С. 46–49.
- 4. Космацкий, Я.И. Исследование процесса инерционного прессования с применением аккумулирующего устройства / Я.И. Космацкий, А.В. Выдрин, Б.В. Баричко и др. // Труды XXI Международной научно-технической конференция «ТРУБЫ-2014»: Сб. науч. трудов. Челябинск: ОАО «РосНИТИ», 2014. Ч. 2. С. 231—234.
- 5. Способ прессования полых профилей и устройство для его осуществления: пат. 2535831 Рос. Федерация: МПК 7 В 21 В 17/00, В 21 С 23/08, В 21 В 25/02 / Я.И. Космацкий, А.В. Выдрин, Б.В. Баричко, Н.В. Фокин, В.Б. Восходов (РФ). − № 2013133135/02; заявл. 16.07.13; опубл. 20.12.14, Бюл. № 35. − 9 с.
- 6. Руководство пользователя. Программа для моделирования процессов обработки металлов давлением QForm 7 2D/3D: версия 7.2. М.: Квантор Форм, 2014. 4.2. 280 с.
- 7. Технологическая инструкция. Производство труб на прессовой линии 20 МН в ТПЦ-2. Волжский трубный завод: ТИ 04.1.02 / сост. И.В. Неклюдов, В.Г. Егоренко. Волжский: Изд-во ВТЗ, 2010. 62 с.
- 8. Свидетельство о государственной регистрации программ для ЭВМ № 2015614079. Программный комплекс для определения модуля сопротивления пластической деформации и усилия прессования полых профилей из сложнолегированных сплавов / Я.И. Космацкий, Б.В. Баричко, Н.В. Фокин и др. № 2015614079; заявл. 25.02.2015; опубл. 06.04.2015. 1 с.

К содержанию