# ОСОБЕННОСТИ ВЛИЯНИЯ СУЛЬФАТ-ИОНОВ НА КОРРОЗИОННО-ЭЛЕКТРОХИМИЧЕСКОЕ ПОВЕДЕНИЕ СВИНЦА, ОЛОВА И ИХ СПЛАВОВ. ДИАГРАММЫ ЭЛЕКТРОХИМИЧЕСКОГО РАВНОВЕСИЯ

# А.Г. Тюрин, А.И. Бирюков, А.П. Тронов

Челябинский государственный университет, г. Челябинск

Построены диаграммы электрохимического равновесия E-pH систем  $Pb-SO_4^{2-}-H_2O$ ,  $Sn-SO_4^{2-}-H_2O$  и сплава  $Pb-Sn-SO_4^{2-}-H_2O$ . Изучены термодинамические особенности влияния сульфат-ионов на коррозионно-электрохимическое поведение свинца, олова и их сплавов.

Ключевые слова: свинец, олово, сульфатные среды, коррозионно-электрохимическое поведения, диаграмма электрохимического поведения.

## Введение

Коррозионно-электрохимическое поведение свинца и свинцово-оловянных сплавов с серной кислоте изучено в работах [1, 2]. Авторами установлено, что при анодном окислении свинцовооловянных сплавов в области потенциалов от минус 0,7 до 0,3 В, в которой происходит образование сульфата свинца, олово присутствует и в пленке, и в электролите. Свинец в электролите не обнаружен. В области потенциалов от 1,9 до 2,4 В. наблюдается аналогичная картина. Сделан вывод о том, что при окислении свинцово-оловянных сплавов происходит активное растворение олова, которое накапливается в анодной пленке и переходит в раствор, повышая при этом пористость образующейся пленки. Происходит увеличение константы диффузионного процесса, что обеспечивает возрастание скорости прохождения сульфат ионов чрез пленку.

В представленных работах показано, что бинарные сплавы Pb–Sn сплавы с содержанием олова 1,5 и 2,0 % обладают наиболее высокой коррозионной стойкостью, а увеличение содержания олова в сплаве до 3 % приводит к сильному снижению стойкости. Также установлено, что при увеличении концентрации олова до 3 % сплав является гетерофазной системой и имеет разу-порядоченную микроструктуру с минимальным размером зерен. В работах методами электронной микроскопии показано, что на поверхности свинцового электрода формируется мелкокристаллическая пленка, в то время как на сплавах, легированных оловом, наблюдаются более крупные кристаллы, что может привести к увеличению пористости пленки.

В литературе отсутствует информация по термодинамическому анализу поведения свинца, олова и их сплавов в серной кислоте. Целью работы было проанализировать диаграммы электрохимического равновесия систем Pb –  $SO_4^{2-}$  – H<sub>2</sub>O, Sn –  $SO_4^{2-}$  – H<sub>2</sub>O и Pb – Sn –  $SO_4^{2-}$  – H<sub>2</sub>O.

#### Экспериментальная часть

Метод построения диаграмм электрохимического равновесия многокомпонентных металлических и смешанных систем предложен в работе [3]. Для подробного рассмотрения систем Me –  $SO_4^{2^-} - H_2O$  необходимо проанализировать диаграмму электрохимического равновесия системы  $SO_4^{2^-} - H_2O$ . Данная диаграмма потенциал – pH при 25 °C, давлении 1 бар (воздух) и  $a_{SO42^-} = 0,1$  моль/л была рассчитана авторами и представлена в работах [4].

На ней можно выделить 13 основных областей преобладания фаз и фазовых составляющих системы. В зависимости от pH раствора и потенциала могут протекать катодные реакции восстановления сульфат- или гидросульфат-ионов до сернистой кислоты  $H_2SO_3$ , гидросульфит-ионов  $HSO_3^-$ , тетратионат-ионов  $S_4O_6^{2-}$ , тиосульфат-ионов  $S_2O_3^{2-}$ , свободной серы S (ромб), сероводородной кислоты  $H_2S$ , гидросульфид-ионов  $HS^-$  и сульфид-ионов  $S^2$ , и анодные реакции окисления сульфат- и гидросульфат-ионов  $HSO_4^-$  до персульфат-ионов  $S_2O_8^{2-}$ .

Стационарный потенциал свинца в сернокислых растворах изменяется в области –0,2...–0,3 В (н.в.э.), что приходится на область термодинамической устойчивости сероводорода. Поэтому в сильнокислых сульфатных растворах необходимо учитывать конкурирующую катодную реакцию восстановления гидросульфат-ионов до сероводорода [5].

Диаграмма электрохимического равновесия свинца в сульфатных растворах приведена на рис. 1.

На данной диаграмме можно выделить 35 областей преобладания. I – Pb + H<sub>2</sub>S + H<sub>2(r)</sub>, II – Pb + HS<sup>-</sup> + H<sub>2(r)</sub>, III – Pb + S<sup>2-</sup> + H<sub>2(r)</sub>, IV – PbS + S<sup>2-</sup> + H<sub>2(r)</sub>, V – PbS + HS<sup>-</sup> + H<sub>2(r)</sub>, VI – PbS + H<sub>2</sub>S + H<sub>2(r)</sub>, VI – PbS + HS<sup>-</sup>, X – PbS<sub>2</sub>O<sub>3</sub>, XI – PbS + S<sub>2</sub>O<sub>3</sub><sup>2-</sup>, XII – PbS + SO<sub>4</sub><sup>2-</sup>, XIII – PbS + S<sub>4</sub>O<sub>6</sub><sup>2-</sup>, XIV – Pb<sup>2+</sup>, S<sub>4</sub>O<sub>6</sub><sup>2-</sup>, XVI – PbSO<sub>3</sub>, XVII – Pb<sup>2+</sup>, H<sub>2</sub>SO<sub>3</sub>, XVIII – PbS + SO<sub>4</sub><sup>2-</sup>, XIX – PbSO<sub>4</sub> + SO<sub>4</sub><sup>2-</sup>, XXI – PbSO<sub>4</sub> + SO<sub>4</sub><sup>2-</sup>, XXV – Pb<sub>3</sub>O<sub>4</sub> + SO<sub>4</sub><sup>2-</sup>, XXVI – Pb<sub>12</sub>O<sub>17</sub> + SO<sub>4</sub><sup>2-</sup>, XXVII – Pb<sub>12</sub>O<sub>19</sub> + SO<sub>4</sub><sup>2-</sup>, XXVI – Pb<sub>3</sub>O<sub>4</sub> + SO<sub>4</sub><sup>2-</sup>, XXVI – Pb<sub>12</sub>O<sub>17</sub> + SO<sub>4</sub><sup>2-</sup>, XXVII – Pb<sub>12</sub>O<sub>19</sub> + SO<sub>4</sub><sup>2-</sup>, XXVII – Pb<sub>12</sub>O<sub>19</sub> + SO<sub>4</sub><sup>2-</sup>, XXXVII – Pb<sub>12</sub>O<sub>4</sub><sup>-</sup> + O<sub>2(r)</sub>, XXXIV – PbO<sub>2</sub> + HSO<sub>4</sub><sup>-</sup> + O<sub>2(r)</sub>, XXXV – PbO<sub>2</sub> + HSO<sub>4</sub><sup>-</sup> + O<sub>2(r)</sub>, XXXV – PbO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup> + O<sub>2(r)</sub>, XXXV – PbO<sub>2</sub> + SO<sub>4</sub><sup>-</sup> + O<sub>2(r)</sub>



Рис. 1. Диаграмма электрохимического равновесия E – pH системы Pb – SO<sub>4</sub><sup>2-</sup> – H<sub>2</sub>O при 25 °C, P = 1 бар (воздух) и *a*<sub>i</sub> = 1 моль/л (негидратированная форма оксидов)

В сульфатсодержащих средах при достаточно отрицательных потенциалах на поверхности свинца может образовываться сульфид свинца PbS во всей области pH. При повышении потенциала в сильнокислых средах присутствует небольшая область активного растворения, а также область существования сульфита свинца PbSO<sub>3</sub>. Пассивация свинца при анодной поляризации связана с образованием на поверхности в зависимости от pH раствора сульфата свинца PbSO<sub>4</sub> в сильнокислых растворах, и смешанных оксидно-сульфатных соединений, образующихся при повышении pH (PbSO<sub>4</sub>·PbO; PbSO<sub>4</sub>·2PbO; PbSO<sub>4</sub>·3PbO). Исключительно оксидная пассивация свин-

# Физическая химия

ца возникает лишь в сильнощелочных средах (pH  $\approx$  14), а также в щелочных средах при потенциалах положительнее +0,5 В.

На рис. 2. приведена диаграмма электрохимического равновесия олова в сульфатных растворах. На данной диаграмме можно выделить 21 область преобладания. I – Sn ( $\beta$ ) + H<sub>2</sub>S + H<sub>2</sub>( $\Gamma$ ); II – Sn ( $\beta$ ) + HS<sup>-</sup> + H<sub>2</sub>( $\Gamma$ ); III – Sn ( $\beta$ ) + S<sup>2-</sup> + H<sub>2</sub>( $\Gamma$ ); IV – SnS + S<sup>2-</sup> + H<sub>2</sub>( $\Gamma$ ); V – SnS + HS<sup>-</sup> + H<sub>2</sub>( $\Gamma$ ); VI – SnS + H<sub>2</sub>S + H<sub>2</sub>( $\Gamma$ ); VII – SnO<sub>2</sub> + H<sub>2</sub>S + H<sub>2</sub>( $\Gamma$ ); VII – SnO<sub>2</sub> + HS<sup>-</sup> + H<sub>2</sub>( $\Gamma$ ); IX – SnO<sub>2</sub> + S<sup>2-</sup> + H<sub>2</sub>( $\Gamma$ ); XI – SnO<sub>2</sub> + HS<sup>-</sup>; XII – SnO<sub>2</sub> + HS<sup>-</sup>; XII – SnO<sub>2</sub> + H<sub>2</sub>S; XIII – SnO<sub>2</sub> + H<sub>2</sub>SO<sub>3</sub><sup>2-</sup>; XIV – SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XVI – SnO<sub>2</sub> + HSO<sub>3</sub><sup>-</sup>; XVII – SnO<sub>2</sub> + HSO<sub>3</sub><sup>-</sup>; XVII – SnO<sub>2</sub> + HSO<sub>4</sub><sup>-</sup> + O<sub>2</sub>( $\Gamma$ ); XX – SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup> + O<sub>2</sub>( $\Gamma$ ); XXI – SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup> + O<sub>2</sub>( $\Gamma$ ).



Рис. 2. Диаграмма электрохимического равновесия E – pH системы Sn – SO<sub>4</sub><sup>2–</sup> – H<sub>2</sub>O при 25 °C, P = 1 бар (воздух) и a<sub>i</sub> = 1 моль/л (негидратированная форма оксидов)

Характерной особенностью коррозионно-электрохимического поведения олова в растворах серной кислоты является также образования сульфида олова SnS при потенциалах  $\approx -0.5$  В до 0...+0,2 В. При потенциалах выше водородного электрода наблюдается пассивация диоксидом олова SnO<sub>2</sub> вплоть до потенциалов выше +2,0 В. На диаграмме не наблюдается образования таких соединений как сульфиты или сульфаты олова, тем не менее соединения серы претерпевают изменения.

Основные химические и электрохимические равновесия в системе Pb – Sn – SO<sub>4</sub><sup>2–</sup> – H<sub>2</sub>O при 25 °C, давлении 1 бар (воздух) и  $a_i = 1$  моль/л, рассчитанные по термодинамическим данным [5], представлены на рис. 3 и в таблице.



Рис. 3. Диаграмма электрохимического равновесия Е – pH системы Pb –Sn – SO₄<sup>2–</sup> – H₂O при 25 °C, P = 1 бар (воздух) и *a*₁ = 1 моль/л (негидратированная форма оксидов)

| Основные химические и электрохимические равновесия в системе Pb – Sn – | - SO4 <sup>2-</sup> | – H <sub>2</sub> O при 25 ° | °С, 1 бар (в | оздух) |
|------------------------------------------------------------------------|---------------------|-----------------------------|--------------|--------|
|------------------------------------------------------------------------|---------------------|-----------------------------|--------------|--------|

| № п/п | Электродная реакция                                                            | Равновесный потенциал, В или pH раствора                 |
|-------|--------------------------------------------------------------------------------|----------------------------------------------------------|
| а     | $2H^+ + 2e = H_2; P_{H2} \approx 5 \cdot 10^{-7} \text{ foap}$                 | 0,186 – 0,0591pH                                         |
| b     | $O_2 + 4H^+ + 4e = 2H_2O; P_{O2} \approx 0,21$ бар                             | 1,219 – 0,0591pH                                         |
| 1     | $\mathrm{H}_2\mathrm{S} \leftrightarrow \mathrm{H}\mathrm{S}^- + \mathrm{H}^+$ | $pH = 6,99 + lg \left( a_{HS^-} / a_{H_2S} \right)$      |
| 2     | $\mathrm{HS}^- \leftrightarrow \mathrm{S}^{2-} + \mathrm{H}^+$                 | $pH = 12,60 + lg \left( a_{S^{2-}} / a_{HS^{-}} \right)$ |
| 3     | $SnO_2 + 4H^+ + 4e = Sn(\beta) + 2H_2O;$<br>$a_{Sn(\beta)} = 1$                | -0,117 - 0,0591pH                                        |
| 4     | $SnS + 2e = Sn(\beta) + S^{2-}$ $a_{Sn(\beta)} = 1$                            | $-0,998 - 0,0295 \lg a_{g^{2-}}$                         |

| №<br>п/п | Электродная реакция                                                                                  | Равновесный потенциал, В<br>или pH раствора                                                                                       |
|----------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 5        | $SnS + H^+ + 2e = Sn(\beta) + HS^-$                                                                  | $-0,626 - 0,0295$ pH $- 0.0295$ lg $a_{\rm HS}^-$                                                                                 |
| 6        | $\frac{a_{Sn(\beta)}}{SnS} + 2H^{+} + 2e = Sn(\beta) + H_2S$                                         | $-0,419 - 0,0591$ pH $- 0.0295$ lg $a_{\rm H_2S}$                                                                                 |
| 7        | $a_{Sn(b)} = 1$<br>$PbS + 2H^+ + 2e = Pb(\alpha) + H_2S$<br>$a_{\alpha} = -0.97$                     | $-0,320 - 0,0591$ pH $- 0.0295$ lg $a_{\rm H_2S}$                                                                                 |
| 8        | $\frac{a_{Pb(\alpha)} - 0.97}{PbS + H^{+} + 2e = Pb(\alpha) + HS^{-}}$                               | $-0,527 - 0,0295$ pH $- 0,0295$ lg $a_{\rm HS}^-$                                                                                 |
| 9        | $\frac{a_{Pb(\alpha)}}{PbS + 2e} = Pb(\alpha) + S^{2-}$                                              | $-0,8987 - 0,0295 \lg a_{ m S^{2-}}$                                                                                              |
| 10       | $SnO_2 + S^{2-} + 4H^+ + 4e = SnS + 2H_2O$                                                           | -0,764 - 0,1182pH + 0,02951g <i>a</i> <sub>S<sup>2-</sup></sub>                                                                   |
| 11       | $SnO_2 + HS^- + 3H^+ + 2e = SnS + 2H_2O$                                                             | $0,392 - 0,08865 \text{pH} + 0,02951 \text{g} a_{\text{HS}^-}$                                                                    |
| 12       | $SnO_2 + H_2S + 2H^+ + 2e = SnS + 2H_2O$                                                             | $0,185 - 0,0591 \text{pH} + 0,02951 \text{g} a_{\text{H}_2\text{S}}$                                                              |
| 13       | $S_4O_6^{2-} + 20H^+ + 18e = 4H_2S + 6H_2O$                                                          | $0,2928 - 0,06567 \text{pH} + 0,00328 \text{lg} \left( a_{\text{S}_{4}\text{O}_{6}^{2-}} / a_{\text{H}_{2}\text{S}}^{4} \right)$  |
| 14       | $S_4O_6^{2-} + 2e = 2S_2O_3^{2-}$                                                                    | $0,08 - 0,0295 \lg \left( a_{\text{S}_2\text{O}_3^{2-}} / a_{\text{S}_4\text{O}_6^{2-}} \right)$                                  |
| 15       | $S_2O_3^{2-} + 10H^+ + 8e = 2H_2S + 3H_2O$                                                           | $0,3194 - 0,073875 \text{pH} + 0,0074 \log \left( a_{\text{S}_2\text{O}_3^{2-}} / a_{\text{H}_2\text{S}} \right)$                 |
| 16       | $S_2O_3^{2-} + 8H^+ + 8e = 2HS^- + 3H_2O$                                                            | $0,216 - 0,0591$ pH + $0,0074$ lg $\left(a_{S_2O_3^{2-}}/a_{HS^-}^2\right)$                                                       |
| 17       | $S_2O_3^{2-} + 6H^+ + 8e = 2S^{2-} + 3H_2O$                                                          | $0,030-0,044325 \text{pH}+0,00739 \text{lg}\left(a_{\text{S}_2\text{O}_3^{2-}}/a_{\text{S}^{2-}}^2\right)$                        |
| 18       | $PbS_2O_3 + 6H^+ + 8e = PbS + S^{2-} + 3H_2O$                                                        | $0,030 - 0,044325$ pH + 0,00739lg $a_{S^{2-}}$                                                                                    |
| 19       | $PbS_2O_3 + 6H^+ + 8e = 2PbS + S_2O_3^{2-} + 3H_2O$                                                  | $4,462 - 0,3546$ pH - 0,05911g $a_{S_2O_3^{2-}}$                                                                                  |
| 20       | $PbS + SO_4^{2-} + 2H^+ = PbS_2O_3 + H_2O$                                                           | pH = 13,93 + 0,51g $a_{SO_4^{2-}}$                                                                                                |
| 21       | $2 \text{ SO}_4^{2-} + 10\text{H}^+ + 8\text{e} = \text{S}_2\text{O}_3^{2-} + 5\text{H}_2\text{O}$   | $0,551 - 0,0739 \text{pH} + 0,0074 \text{lg} \left( a_{\text{SO}_4^{2-}}^2 / a_{\text{S}_2\text{O}_3^{2-}} \right)$               |
| 22       | $4 \text{ SO}_4^{2-} + 20\text{H}^+ + 14\text{e} = \text{S}_4\text{O}_6^{2-} + 10\text{H}_2\text{O}$ | $0,6185 - 0,0844 \text{pH} + 0,00421 \text{g} \left( a_{\text{SO4}^{2-}}^{4} / a_{\text{S4O6}^{2-}}^{4} \right)$                  |
| 23       | $4Pb^{2+} + S_4O_6^{2-} + 12H^+ + 18e = 4PbS + 6H_2O$                                                | $0,3726 - 0,0394$ pH + $0,00328$ lg $\left(a_{\text{Pb}^{2+}}^{4} \cdot a_{\text{S406}^{2-}}^{4}\right)$                          |
| 24       | $PbSO_3 + 6H^+ + 6e = PbS + 3H_2O$                                                                   | 0,4036 – 0,0591pH                                                                                                                 |
| 25       | $4PbSO_3 + 12H^+ + 6e = S_4O_6^{2-} + 4Pb^{2+} + 6H_2O$                                              | $0,4966 - 0,1182$ pH + $0,00985$ lg $\left(a_{Pb^{2+}}^{4} \cdot a_{S_4O_6^{2-}}\right)$                                          |
| 26       | $4PbSO_3 + 2H^+ = H_2SO_3 + Pb^{2+}$                                                                 | $pH = -0.716 - 0.51g \left( a_{Pb^{2+}} \cdot a_{H_2SO_3} \right)$                                                                |
| 27       | $HSO_4^- + Pb^{2+} + 2H^+ + 3e = PbSO_3 + H_2O$                                                      | $0,682 - 0,0394$ pH + $0,0197$ lg $\left(a_{Pb^{2+}}^{4} \cdot a_{HSO_{4}^{-}}\right)$                                            |
| 28       | $4H_2SO_3 + 4H^+ + 6e = S_4O_6^{2-} + 6H_2O$                                                         | $0,553 - 0,0394$ pH + $0,00985$ lg $\left(a_{H_2SO_3}^4/a_{S_4O_6^{2-}}\right)$                                                   |
| 29       | $4HSO_4^{-} + 3H^+ + 12e = H_2SO_3 + H_2O$                                                           | $0,553 - 0,0394$ pH + 0,00985lg $\left(a_{H_2SO_3}^4/a_{S_4O_6^{2-}}\right)$                                                      |
| 30       | $\mathrm{HSO}_{3}^{-} + \mathrm{H}^{+} = \mathrm{H}_{2}\mathrm{SO}_{3}$                              | $pH = 0,715 - lg \left( a_{H_2SO_3} / a_{HSO_3^{-}} \right)$                                                                      |
| 31       | $HSO_4^- + 2H^+ + 2e = HSO_3^- + H_2O$                                                               | $0,620 - 0,0591 \text{pH} + 0,02951 \text{g} \left( a_{\text{HSO}_{3}^{-}} / a_{\text{HSO}_{4}^{-}} \right)$                      |
| 32       | $4\text{HSO}_3^- + 8\text{H}^+ + 6\text{e} = \text{S}_4\text{O}_6^{2-} + 6\text{H}_2\text{O}$        | $0,5565 - 0,04433 \text{pH} + 0,00985 \text{lg} \left( a_{\text{HSO}_{3}^{-}}^{4} / a_{\text{S}_{4}\text{O}_{6}^{2^{-}}} \right)$ |
| 33       | $PbSO_4 + 3H^+ + 2e = 4Pb^{2+} HSO_3^- + H_2O$                                                       | $0,651 - 0,08865$ pH $- 0,02951$ g( $a_{pb^{2+}} \cdot a_{HSO_3^{-}}$ )                                                           |
| 34       | $PbSO_4 + 3H^+ + 2e = 4Pb^{2+} HSO_3^- + H_2O$                                                       | $0,651 - 0,08865$ pH $- 0,0295$ lg( $a_{pb^{2+}} \cdot a_{HSO_3^{-}}$ )                                                           |
| 35       | $4PbSO_4 \cdot PbO + 40H^+ + 32e = 5Pb^{2+} S_4O_6^{2-} + 20H_2O$                                    | $0,628 - 0,0739 \text{pH} - 0,001851 \text{g}(a_{\text{Pb}^{2+}}^5 \cdot a_{\text{S},\Omega_2}^{2-})$                             |

Bulletin of the South Ural State University. Ser. Chemistry. 2016, vol. 8, no. 3, pp. 42–49

| №<br>п/п | Электродная реакция                                                             | Равновесный потенциал, В<br>или pH раствора                          |
|----------|---------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 36       | $PbSO_4 \cdot 2PbO + 2 SO_4^{2-} + 28H^+ + 24e = 3PbS + 14H_2O$                 | $0,5454 - 0,06895$ pH + 0,004221g $a_{SO_4^{2-}}$                    |
| 37       | $PbSO_4 \cdot 3PbO + 3 SO_4^{2-} + 36H^+ + 30e = 4PbS + 19H_2O$                 | $0,5918 - 0,07092$ pH + 0,00591 g $a_{SO_4^{2-}}$                    |
| 38       | $PbO + 2 SO_4^{2-} + 12H^+ + 8e = PbS_2O_3 + 6H_2O$                             | 0,8388 – 0,08865pH + 0,0147751g $a_{{\rm SO_4}^{2-}}$                |
| 39       | $PbSO_4 \cdot 3PbO + H_2O = 4PbO + SO_4^{2-} + 2H^+$                            | pH = $13,93 + 0,51g a_{SO_4^{2-}}$                                   |
| 40       | $PbO + 2H^{+} + 2e = PbS_2O_3 + 6H_2O$                                          | 0,804 - 0,0591pH                                                     |
| 41       | $4Pb_{3}O_{4} + 3SO_{4}^{2-} + 14H^{+} + 8e = 3(PbSO_{4} \cdot 3PbO) + 7H_{2}O$ | $1,421 - 0,1034$ pH + 0,02216 lg $a_{SO_4^{2-}}$                     |
| 42       | $Pb_{12}O_{17} + 2H^+ + 2e = 4Pb_3O_4 + H_2O$                                   | 0,977 – 0,0591pH                                                     |
| 43       | $Pb_{12}O_{17} + 3SO_4^{2-} + 14H^+ + 10e = 3(PbSO_4 \cdot 3PbO) + 8H_2O$       | $1,332 - 0,09456$ pH + 0,01773lg $a_{SO_4^{2-}}$                     |
| 44       | $4(PbSO_4:2PbO) + H_2O = SO_4^{2-} + 3(PbSO_4:3PbO) + 2H^+$                     | pH = 8,34 + 0,51g $a_{SO_4^{2-}}$                                    |
| 45       | $Pb_{12}O_{17} + 4SO_4^{2-} + 18H^+ + 10e = 4(PbSO_4 \cdot 2PbO) + 9H_2O$       | $1,4303 - 0,10638$ pH - 0,0236lg $a_{SO_4^{2-}}$                     |
| 46       | $Pb_{12}O_{19} + 4H^+ + 4e = Pb_{12}O_{17} + 2H_2O$                             | 1,082 – 0,0591рН                                                     |
| 47       | $Pb_{12}O_{19} + 4SO_4^{2-} + 22H^+ + 14e = 4(PbSO_4 \cdot 2PbO) + 11H_2O$      | $1,331 - 0,09287 \text{pH} - 0,016891 \text{g} a_{\text{SO}_4^{2-}}$ |
| 48       | $3(PbSO_4:2PbO) + H2O = SO_4^{2-} + 2(PbSO_4:2PbO) + 2H^+$                      | pH = 6,04 + 0,51g $a_{SO_4^{2-}}$                                    |
| 49       | $Pb_{12}O_{19} + 6SO_4^{2-} + 26H^+ + 14e = 6(PbSO_4 \cdot PbO) + 13H_2O$       | 1,4323 - 0,109757pH - 0,02533lg $a_{SO_4^{2-}}$                      |
| 50       | $PbSO_4 + H_2O = SO_4^{2-} + PbSO_4 \cdot PbO + 2H^+$                           | pH = 2,41 + 0,51g $a_{SO_4^{2-}}$                                    |
| 51       | $HSO_4^{-} = SO_4^{2-} + H^+$                                                   | $pH = 2,00 + lg(a_{Pb^{2+}} \cdot a_{HSO_4^{-}})$                    |
| 52       | $PbSO_4 + H^+ = HSO_4^- + Pb^{2+}$                                              | $pH = 1,365 - lg \left( a_{Pb^{2+}} \cdot a_{HSO_4^{-}} \right)$     |
| 53       | $PbO_2 + 4H^+ + 2e = Pb^{2+} + 2H_2O$                                           | $1,4393 - 0,1182$ pH - 0,0295lg $a_{\rm Pb^{2+}}$                    |
| 54       | $PbO_2 + HSO_4^- + 3H^+ + 2e = Pb^{2+} + 2H_2O$                                 | $1,399 - 0,08865 \text{pH} - 0,02951 \text{g} a_{\text{Pb}^{2+}}$    |
| 55       | $PbO_2 + HSO_4^- + 3H^+ + 2e = PbSO_4 + 2H_2O$                                  | $1,399 - 0,08865$ pH + $0,02951$ g $a_{HSO_4}^-$                     |
| 56'      | $Pb_{12}O_{19} + 12SO_4^{2-} + 38H^+ + 14e = 12PbSO_4 + 19H_2O$                 | $1,5543 - 0,1604$ pH + 0,05067 lg $a_{SO_4^{2-}}$                    |
| 56       | $12PbO_2 + 10H^+ + 10e = Pb_{12}O_{19} + 5H_2O$                                 | 1,082 – 0,0591pH                                                     |

Окончание таблицы

На диаграмме E – pH присутствуют следующие области преобладания: I – α-фаза (Pb) + + $\beta$ -фаза (Sn) + H<sub>2</sub>S + H<sub>2</sub>(r); II –  $\alpha$  +  $\beta$  + HS<sup>-</sup> + H<sub>2</sub>(r); III –  $\alpha$  +  $\beta$  + S<sup>2-</sup> + H<sub>2</sub>(r); IV –  $\alpha$  + SnO<sub>2</sub> + S<sup>2-</sup> + H<sub>2</sub>(r); VI –  $\alpha$  + SnS + HS<sup>-</sup> + H<sub>2</sub>(r); VII –  $\alpha$  + SnS + HS<sup>-</sup> + H<sub>2</sub>(r); VII –  $\alpha$  + SnS + HS<sup>-</sup> + H<sub>2</sub>(r); VII –  $\alpha$  + SnS + HS<sup>-</sup> + H<sub>2</sub>(r); VII –  $\alpha$  + SnS + H<sub>2</sub>S + H<sub>2</sub>(r); VIII – (Pb,Sn)S + HS<sup>-</sup> + H<sub>2</sub>(r); X – (Pb,Sn)S + S<sup>2-</sup> + H<sub>2</sub>(r); XI – PbS + SnO<sub>2</sub> + S<sup>2-</sup> + H<sub>2</sub>(r); XII – PbS + SnO<sub>2</sub> + S<sup>2-</sup>; XIII – PbS + SnO<sub>2</sub> + HS<sup>-</sup> + H<sub>2</sub>(r); XIV – PbS + SnO<sub>2</sub> + H<sub>2</sub>S + H<sub>2</sub>(r); XV – PbS + SnO<sub>2</sub> + H<sub>2</sub>S; XVI – PbS + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XVII – PbS + SnO<sub>2</sub> + SO<sub>2</sub><sup>3-</sup>; XVIII – PbS + SnO<sub>2</sub> + SO<sub>2</sub><sup>3-</sup>; XVII – PbS + SnO<sub>2</sub> + SO<sub>2</sub><sup>3-</sup>; XXII – PbS + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXII – PbS + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXII – PbS + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXII – PbSO<sub>4</sub>· SPO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXII – PbSO<sub>4</sub>· SnO<sub>2</sub> + Pb<sup>2+</sup>, S<sub>4</sub>O<sub>6</sub><sup>2-</sup>; XXVI – SnO<sub>2</sub> + Pb<sup>2+</sup>, HSO<sub>3</sub><sup>-</sup>; XXVI – PbSO<sub>3</sub> + SnO<sub>2</sub> + HSO<sub>4</sub><sup>2-</sup>; XXII – PbSO<sub>4</sub>· SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXII – PbSO<sub>4</sub>· SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXII – PbSO<sub>4</sub>· SnO<sub>2</sub> + Pb<sup>2+</sup>, S<sub>4</sub>O<sub>6</sub><sup>2-</sup>; XXVI – SnO<sub>2</sub> + Pb<sup>2+</sup>, HSO<sub>3</sub><sup>-</sup>; XXVII – PbSO<sub>3</sub> + SnO<sub>2</sub> + HSO<sub>4</sub><sup>-</sup>; XXII – PbSO<sub>3</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXII – PbSO<sub>3</sub> + SnO<sub>2</sub> + Pb<sup>2+</sup>, SAO<sub>6</sub><sup>2-</sup>; XXVI – SnO<sub>2</sub> + Pb<sup>2+</sup>, HSO<sub>3</sub><sup>-</sup>; XXVII – PbSO<sub>3</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXVI – SnO<sub>2</sub> + Pb<sup>2+</sup>, SAO<sub>6</sub><sup>2-</sup>; XXVI – SnO<sub>2</sub> + Pb<sup>2+</sup>, SAO<sub>3</sub><sup>-</sup>; XXVI – PbSO<sub>3</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXVI – PbSO<sub>3</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXVI – PbSO<sub>3</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXXIV – PbSO<sub>3</sub> + SnO<sub>2</sub> + Pb<sup>2+</sup>, SAO<sub>6</sub><sup>2-</sup>; XXVI – SnO<sub>2</sub> + Pb<sup>2+</sup>, SAO<sub>6</sub><sup>2-</sup>; XXVI – SnO<sub>2</sub> + Pb<sup>2+</sup>, SAO<sub>4</sub><sup>2-</sup>; XXXII – PbSO<sub>3</sub> + SnO<sub>2</sub> + HSO<sub>4</sub><sup>-</sup>; XXXIV – Pb<sub>12</sub>O<sub>19</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXXIV – Pb<sub>12</sub>O<sub>19</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXXIV – Pb<sub>12</sub>O<sub>17</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup>; XXXIV – Pb<sub>12</sub>O<sub>19</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup> + O<sub>2</sub>(r); XXXVI – PbSO<sub>4</sub> + SnO<sub>2</sub> + SO<sub>4</sub><sup>2-</sup> + O<sub>2</sub>(r); XXXVI – PbSO<sub>4</sub> + SnO<sub>2</sub> + SO<sub>2</sub><sup>2-</sup> + O<sub>2</sub>(r); XXXIV – SnO<sub>2</sub> + Pb<sup>2+</sup>, HSO<sub>4</sub><sup>-</sup> + O<sub>2</sub>(r); XL – PbO<sub>2</sub> + SnO

Согласно данной диаграмме в области иммунности при потенциале  $\approx -1,0$  В происходит восстановление сульфат ионов до сероводорода в кислой среде. При повышении потенциала олово превращается в сульфид олова SnS, затем образуется смешанный сульфид свинца и олова (Pb, Sn)S. При более положительных потенциалах сульфид олова превращается в диоксид олова SnO<sub>2</sub>, который встраивается в пассивационную пленку, состоящую из сульфида свинца PbS или сульфа

# Физическая химия

тов свинца различного состава PbSO<sub>4</sub>; PbSO<sub>4</sub>·PbO. При этом, диоксид олова, обладающий меньшей коррозионной стойкостью в кислых сернокислых средах, очевидно, растворяется и повышает пористость пассивационной пленки на сплавах свинец – олово, тем самым снижая их коррозионную стойкость. Это согласуется с данным, представленными в работах [1, 2]. При проведении рентгенофазового анализа коррозионной пленки, образованной на свинцово-оловянных сплавах при положительных потенциалах, было обнаружено наличие следовых количеств SnO<sub>2</sub> в пленке.

## Заключение

1. Построены диаграммы E-pH систем Pb – SO<sub>4</sub><sup>2–</sup> – H<sub>2</sub>O, Sn – SO<sub>4</sub><sup>2–</sup> – H<sub>2</sub>O и сплава Pb – Sn – SO<sub>4</sub><sup>2–</sup> – H<sub>2</sub>O при 25 °C.

2. Показано, что при саморастворении свинца в кислых сульфатных средах он может подвергаться сульфидной пассивации, а при повышении потенциала – сульфатной пассивации. При увеличении pH возможно образование основных сульфатов с различным содержанием PbO: PbSO<sub>4</sub>·nPbO. Олово в кислых сульфатных растворах пассивируется сульфидом SnS и диоксидом олова SnO<sub>2</sub>.

3. При коррозии свинцово-оловянных сплавов, согласно диаграмме электрохимического равновесия, в пленке может накапливаться совместно с соединениями свинца диоксид олова, который увеличивает пористость пленки и, соответственно снижает коррозионную стойкость свинцово-оловянных сплавов.

#### Литература

1. Состав и структура пассивирущих слоев на поверхности свинца и многокомпонентных свинцовых сплавов при их анодном окислении в 4,8 М растворе серной кислоты / М.М. Бурашникова, И.В. Зотова, И.А. Казаринов и др. // Электрохимическая энергетика. – 2011. – Т. 11, № 4. – С. 213–222.

2. Бурашникова, М.М. Механизм анодной пассивации свинцово-оловянных сплавов в растворе серной кислоты / М.М. Бурашникова, И.В. Зотова, И.А. Казаринов // Электрохимическая энергетика. – 2013. – Т. 13, № 4. – С. 205–212.

3. Тюрин, А.Г. Термодинамика химической и электрохимической устойчивости твердых сплавов железа, хрома и никеля: монография / А.Г. Тюрин. – Челябинск: Изд-во Челяб. гос. ун-та, 2011. – 241 с.

4. Тюрин, А.Г. Диаграмма электрохимического равновесия стали Ст.3 в сильнокислых сульфатных растворах / А.Г. Тюрин, А. И. Бирюков // Вестник Казанского технологического университета. – Т. 15, № 16. – С. 74–77.

5. Справочник по электрохимии / под ред. А.М. Сухотина. – Л.: Химия, 1981. – 488 с.

**Тюрин Александр Георгиевич** – доктор химических наук, профессор, заведующий кафедрой аналитической и физической и химии, Челябинский государственный университет. 454021, г. Челябинск, ул. Бр. Кашириных, 129.

Бирюков Александр Игоревич – кандидат химических наук, доцент, кафедра аналитической и физической химии, химический факультет, Челябинский государственный университет. 454021, г. Челябинск, ул. Бр. Кашириных, 129. E-mail: st4857@yandex.ru

**Тронов Артем Павлович** – ассистент, кафедра аналитической и физической химии, химический факультет, Челябинский государственный университет. 454021, г. Челябинск, ул. Бр. Кашириных, 129.

## Поступила в редакцию 15 марта 2016 г.

DOI: 10.14529/chem160306

# FEATURES OF SULPHATE INFLUENCE ON ELECTROCHEMICAL CORROSION BEHAVIOR OF LEAD, TIN AND THEIR ALLOYS. DIAGRAMS OF ELECTROCHEMICAL EQUILIBRIUM

A.G. Tyurin A.I. Birukov, st4857@yandex.ru A.P. Tronov

Chelyabinsk State University, Chelyabinsk, Russian Federation

Diagrams of electrochemical equilibrium E - pH of the Pb–  $SO_4^{2-}$ –  $H_2O$  and  $Sn - SO_4^{2-}$ –  $H_2O$  systems and the Pb–  $Sn - SO_4^{2-}$ –  $H_2O$  alloy have been constructed. The thermodynamic features of the effect of sulfate ions on electrochemical corrosion behavior of lead, tin and their alloys have been studied.

*Keywords: lead, tin, sulfate environment, electrochemical corrosion behavior, diagram of electrochemical behavior.* 

## References

1. Burashnikova M. M., Zotova I. V., Kazarinov I. A. [The Composition and Structure of Pestivirus Layers on the Surface of Multi-component Lead and Lead Alloys During Anodic Oxidation in 4.8 M Sulfuric Acid Solution]. *Electrochemical energy*, 2011, vol. 11, no. 4, pp. 213–222. (in Russ.)

2. Burashnikova M. M., Zotova I.V., Kazarinov I.A. [The Mechanism of the Anodic Passivation of Lead-tin Alloys in Sulfuric Acid Solution]. *Electrochemical energy*, 2013, vol. 13, no. 4, pp. 205–212. (in Russ.)

3. Turin, A.G. *Termodinamika himicheskoj i jelektrohimicheskoj ustojchivosti tverdyh splavov zheleza, hroma i nikelja: monografija* [Thermodynamics of chemical and electrochemical stability of hard alloys of iron, chromium and nickel: Monograph]. Chelyabinsk, Chelyabinsk St. Univ. Publ., 2011. 241 p. (in Russ.)

4. Turin A.G., Biryukov A.I. [Diagram of the electrochemical equilibrium in Article 3 are highly acidic sulfate solutions]. *Bulletin of the Kazan State Technological University*, 2012, no. 16, pp. 74–77. (in Russ.)

5. Suhotin, A.M. *Spravochnik po elektrohimmii* [Handbook of electrochemistry]. Leningrad, Chemistry, 1981. 488 p.

## Received 15 March 2016

#### ОБРАЗЕЦ ЦИТИРОВАНИЯ

Тюрин, А.Г. Особенности влияния сульфат-ионов на коррозионно-электрохимическое поведение свинца, олова и их сплавов. Диаграммы электрохимического равновесия / А.Г. Тюрин, А.И. Бирюков, А.П. Тронов // Вестник ЮУрГУ. Серия «Химия». – 2016. – Т. 8, № 3. – С. 42–49. DOI: 10.14529/chem160306

# FOR CITATION

Tyurin A.G., Birukov A.I., Tronov A.P. Features of Sulphate Influence on Electrochemical Corrosion Behavior of Lead, Tin and Their Alloys. Diagrams of Electrochemical Equilibrium. *Bulletin of the South Ural State University. Ser. Chemistry.* 2016, vol. 8, no. 3, pp. 42–49. DOI: 10.14529/chem160306