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We study conditions for the loss of stability in a plastic deformation of a layer of weaker
material in a sheet specimen. The layer is not collinear with the exterior forces acting in the
sheet plane, which are orthogonal to each other and have opposite signs. The parameters
of the problem are: the angle between the layer and the direction of exterior forces; the
ratio of stresses due to exterior forces; the ratio of strengths of the layer material and the
main material of the sheet specimen; the strengthening law of the layer material; the ratio
of thicknesses of the layer and the specimen. Basing on Swift’s plastic instability criterion
for a deformation of the layer material, we obtain an algorithm for calculating critical stress
in the layer and critical exterior loading in dependence on the indicated parameters. When
contact strengthening of the layer is absent, our results have explicit analytic expressions.
We find conditions under which the layer does not lower the strength of the specimen. We
find conditions for the stressed state of the layer to be a pure shear and study this case.

Keywords:  inclined plastic layer; plastic instability; stress-strain state; Swift’s
criterion.

Introduction. To study the behavior of inhomogeneous constructions in the conditions
of complicated stressed states is necessary for estimating their bearing capacity [1, 2]. One
of the most efficient methods for calculating critical deformations and stresses for biaxial
loading, corresponding to the loss of stability in a plastic deformation, proposed in [3],
rests on the plastic instability criterion of [4]. Basing on refinements and development
of the approach of [3], explicit analytic dependence of critical deformations, stresses, and
pressure in homogeneous thin cylindrical hulls and sheet constructions were obtained in [5].
Welded thin hulls and sheets can include layers of weaker material: welded seams, fusion
zones, thermal influence zones. The study of critical states of these joints relies on two
theories: the theory of stability loss in a deformation of layer material |2, 3, 5] and the
theory of contact strengthening of the layer material [5-7|. The latter enables us to find the
dependence of normal and tangent stresses o, and 7,, on the mechanical inhomogeneity
coefficient K = kT /k~ of the joint, as well as the contact strengthening coefficient g of the
layer. Here k™ and k™ are plasticity parameters of the main material and layer material
characterizing the moment when plastic stability is lost.

Inclined layers are of practical interest. They lie at some angle to the direction of
exterior mutually orthogonal loads generating the stresses o1 and go. Welded seams, fusion
zones, and thermal influence zones of the factory seams of twisted pipes are important
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examples of layers of this type. It is shown in [5] that for an inclined layer we can use the
computational scheme of the case when the layer is orthogonal to one of the exterior loads.
In this scheme, instead of the coefficient K we should use the parameter K, (see (5)
below) depending on the mechanical and geometric characteristics of the joint and loading
conditions. Assume that the following parameters are specified in the statement of the
problem.

(1) The mechanical inhomogeneity coefficient K of the joint.

(2) The slope v of the layer (the angle between the directions of the layer and the
action of the load o, see Fig. 1).

(3) The relative thickness x of the layer, that is, the ratio of its height (thickness) to
its width (thickness of the sheet or hull).

(4) The loading biaxiality coefficient m = oy /0.

G,

Puc. 1. Inclined layer in sheet specimen.

We determine the following parameters from the given conditions: the coefficient g > 1
of contact strengthening of the layer material, which depends on x, Kj;,., and v, and the
conditional mechanical inhomogeneity coefficient K, also depending on K and v.

Introduce some notation. Put

B = cos’v +msin’v; C = (1—m)sin2v. (1)
For brevity, denote 7,, by 7. As indicated in [5, pp. 231, 232],
7=0,5C0;; 0y = Bos. (2)

Here 0y 4, = fol oy(x, x)dx is the mean value of the stress o, on the contact surface. The
reference also includes a formula introducing the contact strengthening coefficient g¢:

Oy av = 29/ (k7)? — 72. (3)

The von Mises plasticity condition for an inclined layer |5, p. 232] is

(00 —0y)? + sz = (k") - 1% (4)

124 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2016, vol. 9, no. 1, pp. 123-129



KPATKUWE COOBIIEHU A

The analog of K, the conditional mechanical inhomogeneity coefficient |5, p. 233], is

+\2 __ 2
)2 —7 g1y

Kona =\ [ =72 KT B ®)

We consider the case 7 = k™ separately.

The restriction m > 0 is imposed in [5, Ch. 4]. If m < 0 then the computational
scheme of [5] is inapplicable. The goal of this article is to study the critical states of an
inclined weak layer in a sheet specimen when K;,; > 1 and m < 0.

1. The Special Case of a Stressed State of the Layer. Equation (5) does not cover
the case
Il =k, (6)

B=0. (7)
Verify that (6) and (7) are equivalent conditions.

Proposition 1. 7=k~ & B=0< m = —ctg?v.

Proof. Suppose that 7 = k~. Then (2) yields o3 # 0 and (3) yields

B:Uycwzzg (k_)2_7—2:0'
(o) g9

Conversely, if B = 0 then (2) and (3) imply that /(k~)%? — 72 = 0. By (1), conditions
(6) and (7) are equivalent to each of the conditions

m = —ctg’v; C=2ctgr; C=2V-m. (8)

Corollary 1. When the stresses o, and oy generated by exterior loads satisfy o1 =~
—oyctg? v, we have K,y = 00, that is, the main material behaves as a rigid body.

Proposition 2. Under the condition |T| = k™ the layer material is in a pure shear state.
Proof. For symmetry reasons, we have 7,, = 0. The fluidity equation (4) and (6) yield

oy =0y =0,=0; Ty =0. 9)
The equilibrium equations in the inclined layer [5, p. 232| are

0oy 0Ty

ox dy

oy , 0Ty

dy ox

= 0; = 0. (10)
From (9) and (10) we infer that o, = 0, = 0, = 0 (here 0 = (0, + 0, + 0.)/3 is the
hydrostatic stress). Hence, o, o, = 0. Since 0, 4, = Boy by (2), it follows that ¢ = 0.
Thus, 0, =0y =0, = 74y = 7. = 0.
If oy <0 and o2 > 0, using (2), (6), and (8), we obtain
_ 2k™m 2k kT

=5 = —/—mk™ = (—ctgv)k™; oy = o T = (tgv)k™. (11)
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Similarly, for o7 > 0 and 02 < 0 condition (6) implies the equalities

2k~
o = C’m =+V—mk™ = (ctgv)k™; o9 =

-2k~ kT
C  J-m

= (—tg)k~.  (12)

2. Equal Strength Conditions. Consider the conditions under which the weaker layer
does not lower the strength of the joint. This occurs when the main material reaches the
critical state simultaneously with the layer. For the critical state in the layer to be reached
earlier than in the main material, it is necessary and sufficient that the critical values oy
and o9 of stresses satisfy at least one of the restrictions

1] < 2K7, Joo| < 2K (13)
It follows from |7, p. 232] that (13) holds if and only if

g glm|
—— < KV ——=<K
/B? + 2C2 ~ /B + 2C2 ~
If myKC > 1 then (14) holds. If m;KC < 1 then (14) is equivalent to the inequality
KB 1
m m; = max (1; —) . (15)
m|

g =< )
V1 —miK2C?

This implies the following criterion of equal strength for a homogeneous sheet specimen
and a specimen including a weaker layer:

(14)

Proposition 3. In order for the layer not to lower the strength of the joint, it is necessary
and sufficient that myKC > 1 and the contact strengthening coefficient reach the value
in the right-hand side of (15).

3. Finding the Parameter £~. To calculate the bearing capacity of a sheet construction,
we have to know the critical values of ™ and k~. The parameter k', characterizing the
main material of the sheet specimen, is calculated as in the seamless construction |3, 5]. The
parameter k£~ characterizes the state of the layer material at the moment when the stability
of plastic deformation is lost. It is shown experimentally [8] that for complicated loading
with simultaneous stretching and shear Ludwik’s single curve hypothesis is confirmed in
the form

0; = f(gi)a (16)

where 0; and ¢; are the stress and deformation intensities respectively. Thus, we can apply
this hypothesis for the layer material subject to similar loading. Assume that

o, =Ae}, A=e"n""op. (17)

Here e is Euler’s constant, n is a parameter of the material characterizing its plastic
properties (0.1 <n < 0.3 in welded joints), and o is the strength of the material. Further
arguments carry over easily to other approximations of the dependence (16) proposed
in [5]. Assume that compression occurs in the direction of the action of oy, and stretching
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occurs in the direction of oy. Then it is obvious that m = 01/09 < 0. The theory of small
deformations yields

252Ui
= =20 1
c o9(2 —m) (18)
Since o9 = (29k7)/(\/B? + ¢?C?) by [5], we infer from (18) that
gio2(2—m)  £03(2—m) 9(2 —m)e;
€9 = = = . (19)
20; 23k~ V3./B? T 2C?

Denote by h = hgexp(ez) the thickness of the layer in the direction of oy, where hg is the
thickness of the layer at the initial moment of loading (see Fig. 1), by ¢ and [ the thickness
and width of the sheet, and so V = tlh is the volume of the layer, which is invariant in
the deformation. Denote also by N, the exterior force acting in the direction of o9 at the
critical moment of loading. Then

N2 NQh . Ngho

oV 1%

oy = exp(ey).

Thus, (19) implies that at the critical moment of loading

N. Noh 92— . B2 2,12
0; = Moy =M i/hoexp(&):M—‘Q/oexp( 9(2 —me; ) M:\/g\/ ‘1‘90'

B? + ¢*C? 29

(20)
Applying Swift’s criterion [1], that is, equating the differentials of the right-hand sides of
(17) and (20), we obtain the deformation intensity at the critical moment of loading:

- V3n+\/B? + 9202. 21)

5 9(2 —m)

Inserting the right-hand side of (21) into (17), we obtain the following assertion.

Proposition 4. At the critical moment of loading we can calculate the intensity of stresses,
the parameter k=, and the values of stresses of the exterior forces as

/ B2 202\ " ) 92 _ .
o; = \/§e +9°C 0pg; k— = 7 y 01 =M0og;, 02 = g( m)a, . (22)
9(2—m) V3 V3y/B? + 2C?

Let us describe the algorithm for calculating the critical values of stresses of the
exterior loadings. If the relative thickness x of the layer is large, x > 1, then the contact
strengthening of the layer is absent: g = 1. In this case (22) is an explicit formula. For
thin layers ¢ > 1. Then (5) and (22) are implicit formulas. Putting ¢ = 1 in (5) and
(22), we can find the first approximations to the parameters £~ and K, and then K.
Knowing K., we calculate the parameter g using the algorithm of [7], and then apply (22)
to find the second approximation for £~. This enables us to launch an iterative process
for calculating o, and 0. On each step we calculate K using (5) and check the equal
strength condition (13) in the form (14). If it holds on some step then the calculation
stops. Otherwise, the procedure stops when g stabilizes.
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Conclusions. In this article we obtained an algorithm for calculating the critical values of
stress and deformation in a layer and the critical values of exterior loadings in dependence
on the specified parameters. When the thickness of the layer is comparable to or greater
than that of the sheet, we gave explicit analytic expressions for these quantities. We studied

the

special case of weaker layer location in which the stressed state of the layer is a pure

shear. We found conditions under which the weaker layer does not lower the strength of
the joint.
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KPUTNYECKOE COCTOAHUVUE HAKJIOHHOI'O CJIO4A
B JINCTOBOM OBPA3IIE IIPU OTPULHATEJ/JIbHOM
KOOPUIMNEHTE JIBYXOCHOCTU HATPYZ2KEHN A

B.JI. Tuavman, A.H. Tusab

Wccmenytores ycaoBusg MOTEpU YCTOMYMBOCTY IIPOIECCA ILIACTUIECKOTO AedhopMupo-
BAHUs CJIOS W3 MEHee MPOYHOro MaTepuajia B JuctoBoM obpasie. Crioll He KoJtmHeapeH
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BHEIIHUM CHJIaM, JeHCTBYIOIIUM B IJIOCKOCTH JIUCTA, OPTOTOHAJILHBIM JPYT JAPYTY U UMEIO-
muM passble 3Haku. [lapamerpamMu 3ama4un siBIASIOTCS: YOI MEXK/Iy CJIO0EM U HAIIPABJIEHU-
€M BHEITHWX CHJI; OTHOIIIeHNe HAPAKEHUH, TOPOXKIaMbIX BHEITHUMH CUJIAMU; OTHOIIIEHNE
TIPEJIeJIOB TIPOYHOCTH MaTepHasa ¢JIos U OCHOBHOIO MaTepuaJia JIICTOBOIO 00pa3slia; 3aKOH
YIPOYHEHUsT MATEPHUAIIA CJIOS; OTHOIIEHUE TOIMIMHBL CI0s K Tosmuae obpasia. Ha ocrose
kpurepus CBudra MIaCTUYECKON HEYCTOHYIUBOCTH mporiecca 1eOPMUPOBAHISA MATEPUAIIA,
€JI04 IOJIy49€H aJIlOPUTM JIJIAd BbIYUCIEHUA KPUTUYECKOI MHTeHCUBHOCTHY HAIIPAXKEHUH B CJ10e
W KPUTHUIECKUX BHENTHUX HATPY30K B 3aBUCHMOCTHU OT YKa3aHHBIX TMapaMeTpoB. B ciydae
OTCYTCTBHUS KOHTAKTHOT'O YIIPOYHEHUS CJIOsT [TOJIY 9€HHBIE PE3YIBTATHI MMEIOT (hOPMY STBHBIX
AHAJNTAYECKUX BbIpaxkenuit. Halinennl ycaoBus, Mpu KOTOPBIX CJION HE CHUXKAET IMTPOTHO-
ctu obpasna. Haiiens! yciaoBus u nucciaeioBan iy vaii, KOTJIa HAPSIKEHHOE COCTOIHUE CJIOs
ABJIAETCA YUCTBIM CIBUIOM.

Kamovesnie caosa: naxaoruuili naccmusieckuts caoti; naGCmMuUNeCKas HEYCmoUuueocms;

Hanpascenno-dedopmuposannoe cocmoanue; kpumeputs Ceudma.
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