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ON ONE MATHEMATICAL MODEL DESCRIBED
BY BOUNDARY VALUE PROBLEM
FOR THE BIHARMONIC EQUATION

V.V. Karachik, South Ural State University, Chelyabinsk, Russian Federation,
karachik@susu.ru,

B.T. Torebek, Institute of Mathematics and Mathematical Modelling, Almaty,
Kazakhistan, torebek@math.kz

In this paper mathematical model described by a generalized third boundary value
problem for the homogeneous biharmonic equation in the unit ball with boundary operators
up to the third order containing normal derivatives and Laplacian is investigated. Particular
cases of the considered mathematical model are the classical models described by Dirichlet,
Riquier, and Robin problems, and the Steklov spectral problem, as well as many other
mathematical models generated by these boundary conditions. Two existence theorems
for the solution of the problem are proved. Existence conditions are obtained in the
form of orthogonality on the boundary of some linear combination of boundary functions
to homogeneous harmonic polynomials of a particular order. The obtained results are
illustrated by some special cases of the general problem.
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Introduction

A significant number of mathematical models in physics and engineering lead to partial
differential equations. The steady processes of various physical nature are described by the
partial differential equations of elliptic type. One of the important special cases of fourth
order elliptic equations is the biharmonic equation A%u(z) = f(x).

Investigation of mathematical models of problems of the plane deformation of the
elasticity theory in many cases is reduced to integration of the biharmonic equation
with the appropriate boundary conditions and under some uniqueness conditions for the
unknown function.

Moreover investigation of many mathematical models of continuum mechanics are
reduced to solving the harmonic and biharmonic equations. However the convenient
analytical expressions for the solutions are obtained only for the certain domains of
particular forms. Application of biharmonic problems in mathematical models of mechanics
and physics can be found in the numerous scientific investigations (see, for example, [1-3]).

Multiple applications of boundary value problems for the biharmonic equation
in mathematical models of mechanics and physics encourage investigation of various
formulations of boundary value problems for the biharmonic equation. The class of
biharmonic functions includes a class of harmonic functions and is a subclass of
polyharmonic functions. One of the first important works on the biharmonic equation
is the article by Almansi [4]. Following this work, there was a big interest in studying of
boundary value problems for the biharmonic equation (see [5-7]).

The Dirichlet problem (see [8]) is a well known boundary value problem for biharmonic
equation. In recent years other types of boundary value problems for the biharmonic
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equation, such as the problems by Riquier (see |9]), by Neumann (see [10-12]), by Robin
and etc are actively studied. In the spectral theory the Steklov spectral problem is of some
interest.

The present paper is organized as follows. In Section 1for the biharmonic equation in
the unit ball a boundary value problem (1) — (2) with the boundary conditions of general
type, called by us as a generalized third boundary value problem is formulated. Particular
cases of the problem are considered in Section 4. In Section 2, namely in Theorem 2, the
conditions of unconditional solvability of the problem for the homogeneous biharmonic
equation are found. These conditions coincide with the conditions of uniqueness from
Theorem 1. In Theorem 3 of Section 3 the case, when the conditions of Theorem 2 are not
fulfilled, but a solution of the considered problem still exists, are obtained.

1. Statement of a Problem

Let S = {z € R": |z| < 1} be an n-dimensional unit ball in the Euclidean space R"
with the norm |z| = \/2? + 22 + ... + 22, and 95 = {x € R" : |z| = 1} be an unit sphere.
In S we consider the following boundary value problem for the biharmonic equation

A*u = f(x), x€S8, (1)

agol + am%u + aogAu‘aS =i(s), s€aS,

(2)

aH%u + ajpAu + alg%Au‘as = po(s), s€0S,

where aa_y is the outside normal derivative, ag; and a;; where 7 = 1,2, 3 are real constants,
and f(x),¢1(z), p2(x) are defined function, smoothness of which will be given below. As
a solution of problem (1) — (2) we consider a biharmonic in S function u(z) from the class
u € C*(S) N C3(S) which satisfies on dS conditions (2).

Problem (1) — (2) generalizes the known Dirichlet problem (agy # 0, a11 # 0, and all
other coefficients are zero), Riquier problem (agg # 0, a12 # 0, and all other coefficients are
zero), but does not generalize the Neumann boundary value problem. If agy # 0, a2 > 0,
a;p < 0, and all other coefficients vanish, then conditions (2) coincide with the Steklov
conditions [13]. In [14] uniqueness of a solution for (1) — (2) was proved.

Theorem 1. Solution of problem (1) — (2) is unique if and only if the following polynomial

oo + CL01/\ 2(101 + (2n + 4/\)a02

AN = a1y 2a11 + (2n + 4N\ )arz + A(2n + 4N )ags

has no roots in Ny = NU{0}. If A(m) = 0, then the homogeneous problem (1) — (2) has
a solution

u(z) = (Caolz]* + Cy — Cs) Hyn(x),

where H,,(z) is an arbitrary homogeneous harmonic polynomial of degree m, and the
constants C, Cy are found from the system of algebraic equations

apo —f- maopi 2@01 + (2’/’L + 4m)a02 Cl _ 0 (3)
may, 2a11 + (2n + 4m)asz + m(2n + 4m)ais Cy ‘
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2. Unconditional Existence of a Solution

One auxiliary assertion in which harmonic functions from the Almansi representation
are explicitly defined can be easily proved.

Lemma 1. Let u(x) be a biharmonic function in S, then the following functions

|z 1

up(z) = u(zr) — T/o " Au(tPr) dt,  uy(x) = 5/0 " Au(ts) dt (4)

are harmonic in S and such that the Almansi representation u(x) = ug(x)+|x|>uy (x) holds
n S.
Theorem 2. Solution of the problem

A*u=0, z€S, (5)

apot + am%“ + aozAU’ = p1(s), v €095,

, 99 (6)

(1113%u + a1pAu + am%AU‘aS =ps(s), =€,

from the class u € C3(S) for arbitrary functions ¢, € C?(0S) and v, € CH(DS) ewist, if
and only if the polynomaial

oo + a01/\ 2&01 + <2TZ + 4)\)&02

A()\) - a1\ 2a11 + (271 + 4)\)a12 + /\(Qn + 4)‘)0’13

has no roots in Ny.

Proof. Consider the harmonic in S functions v;(x) and va(x) such that for them the
equalities
vi(z)]os = p1(s), s€0S, wva(x)|as = pal(s), s€ IS

hold, i.e. vi(z) and vy(x) are solutions of the Dirichlet problem for the Laplace equation
in S. By Lemma 1 for the biharmonic function w(z) the Almansi representation
holds. Let us find the functions uo(z) and w;(z) under which the biharmonic function
u(z) = ug(z) + |z|*uy () is a solution of (5) — (6). Consider the operators L; and Lo from
the Theorem 1. Then, because of equality

A (|z[Pv(x)) = (2n + 4A)v(z)
we have

Liu = Ly (up(x) + |2]2uy(x)) = agou + apr Au + aga(2n + 4A)uy,
Lou = Ly (up(z) + |2]2uy(x)) = apnAu + a12(2n + 40)uy + a13A(2n + 4A)u;.

Taking the limit as © — s € 95, as in Theorem 1, we obtain

CLOQ(UO + Ul) + aopy (AUO —f- (A + 2)U1) —I— GOQ(ZTL + 4A> Uy = (pl(S), (7)
arr (Aug 4+ (A + 2)ur) + a12(2n + 4A)uy + asA(2n + 4A)uy = ao(s).

By the uniqueness of the Dirichlet problem solution for the Laplace equation in S, we
conclude that equalities (7) can be extended to S
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CLO()(UO —I— Ul) —f- Qo1 (AUO —I— (A —I— 2)u1) + a02(2n + 4A) Uy = U1($)7
ary (Aug + (A 4 2)uq) + a12(2n + 4M)uy + aizA(2n + 4A)u; = ve(x),

because by the properties of the operator A the functions on the left-hand side in the last
equalities are harmonic in S. We rewrite the resulting equations in the matrix form

( ago + an N ago + (A + 2)ag + (2n + 4A)agy ) < o ) — ( v ) , (8)

CLHA (A + 2)@11 + (2n + 4A) (a12 + ACL13> (751 (%)

Equation (8) is a system of differential equations in harmonic functions
in S. Let us show that (8) holds also in S. By the theorem’s condition
we have wu(r) €  C3(S), then according to formulas (4) we obtain
up(z), w1 (z) € C*(S). Taking into account that Au; = $Au—2u; (see Lemma 1) we obtain
Aui(z) € CH(S). However, because ug(r) € C(S) and Auy(x) € CY(S) equation (8)
is fulfilled in S. So, from the above reasoning we can conclude that if the function
u(z) = up(w) + |2>ui(x) € C3(S) is a solution of the problem (5) — (6), then harmonic
functions uo(z) and u, () satisfy (8) in S.

Converse assertion also holds, i.e. if the harmonic functions ug(z) € C'(S) and
ui(z) € CYS), Auy(z) € C*(S) satisfy (8) in S, then they satisfy (7), and therefore the
function u(z) = up(x) + |x|*us () is a solution of (5) — (6). Since Au(z) = (2n+ 4A)u; (),
then u(z) € C3(S). Thus, problem (5) — (6) and equation (8) in S are equivalent.

Consider the following matrix

A()\) o Qoo + AL A Qoo + ()\ + 2)@01 + (2n + 4/\)&02
o all)\ ()\ -+ 2)&11 + (2n -+ 4)\)@12 -+ )\(271, -+ 4)\)@13

depending on a parameter A\ € R. It is easy to see that det A(\) = A(\) and
degdet A(A) = 3. Therefore, under the conditions of the theorem the matrix A()\) is non-
singular for A € Ny. System (8) can be written in the form

AMNU(z) =V (z), z€S, 9)

Uy (%

where U = < 1o ) and V = ( vt ) We expand the polynomial det A(\)

det AN = A = (A — A = A) (A = Ag),

where \; € C, i = 1,2,3 are the roots of the polynomial A(X).
1) Let all the roots A; of the polynomial A(\) be different. It is well known that in

this case
1 b1 b2 b3

AN AN A hm Ao

where b; € R. The inverse matrix A~!(\) to A()) has the form A=1(\) = ﬁA*()\), where

()\ + 2)0,11 + (2n + 4)\) (CL12 + )\(113) —aopg — ()\ + 2)(101 — (27’L + 4)\)&02
—an)\ Qoo + a01>\ '

o= (
Consider the following operators depending on the roots A; (see [16])

M;(ANv(z) = /01 =M (L) dt,
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where i = 1,2, 3. If %iné t~Mw(tz) = 0, then it is easy to see that for a differentiable function
_)

w(x) the following equalities hold
(A = XA)M(Nw = (A = N) [ 75 w(ta)dt = =\ [ N w(te)dt+
LNy, (te)dt = =N, [y N S (tr)dt + [ N (tr)dt = (10)

—\i fol t= A~ Lw(tx)dt + t_’\iw(t:c)|(1) + A fol t= Al (tr)dt = t"\iw(t:c)|(1) = w(x).

Since the following equalities are true

1= A0 (355 + 355+ al) = G20+ 520 52 =
= Cbl()\ — )\Q)()\ — )\3) + Cbg()\ — )\1)()\ — )\3) + Cbg()\ — )\1)()\ — )\2),

then for the function w € C2(S) such that lim tMw(tr) =0, i=1,2,3 we have
H

A(A) (b1 Mi(A) 4 baMa(A) + by Mz(A)) w = (cbi(A — Ao)(A — X3)+
+ cha(A — M) (A = A3) + cbs(A = X)) (A= X))w=1-w. (11)

Therefore, if the function V(z) satisfies the conditions Pn& t=V (tx) = 0, where i =
—

1,2, 3, then the solution of (9) can be written in the form
Ulx) = A"(A) (b1 Mi(A) + bo Mo (A) + bsMs(A)) V(). (12)

_Indeed, the function U(z), which is found from (12) by virtue of (11) satisfies (9) in
S, ie.
AN)U (@) = AM)A™(A) (b Mi(A) + by Mo (A) + b3 M3(A)) V() =

2) Let two roots of the polynomial A(X) be equal Ay = Ay, i.e. A(N) = ¢(A — A\)° (A —

A3). It is known that in this case A%)\) = /\Elh + ()\_bil)2 + Agg, and hence

by by b )_blA(A) AN b AN

1=A(\ = =
()()\—)\1+(A—>\1)2+>\—/\3 A=A N A

= by (A — M) (A = Ag) 4 cha(A — Ng) + cbs(A — A)% (13)

Consider the operator
1
MPW)ola) == [t e ofen) e
0

It is easy to see that if the function w(x) is differentiable, then the equalities

(A = M)MP (A)w = My (A)w + InttNw(te)|, = Mi(A)w,
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hold and hence (A — /\1)2M1(2)(A)w = w, if ?r% Int t~w(tz) = 0. Due to (13) a function
—
w € C?(S) such that lin% Int t~Mw(tz) = 0 satisfies the equality
%

A(A) <b1M1(A) b, M (A) + 53M3(A)> w =
= (ebi(A — M)(A = A3) + cha(A — Ag) + eby(A — M) )w =1 w.
So, if A; = A2 and the function V(x) satisfies the conditions lim Intt=*1V (tz) = 0 and

—0
PI% t=23V (tz) = 0, then the solution of (9) can be written as
U(x) = A°(A) (b Mi(A) + b M (A) + b My(A) ) V(). (14)

3) Let the three roots of the polynomial A()) be equal, i.e. A(N) = c¢(A — A)°. We
consider the operator

1 1
M Welr) = /0 % £ Ly (k) d.

It is easy to see that if the function w(x) is a differentiable one, then we have

1
(A= A)MP(A)w = (A — )\1)% / Wt + M (k) dt —
0

A1 I
S / In?t t—tw(ta) dt + = / In*t ¢ M, (to)dt =
2 Jo 2.Jo
A ' 2, ;=M —1 Lo, 1A ! 2,—A1—1
-5 [ Wite w(tx)dt+§ln tt 1w(t:1:)}0+? Ittt (ta)dt—
0 0

1
a 1 _ 1
—/0 Int t M w(tr)dt = MP (ANw + §ln2tt Mu(ta)|, = M7 (A)w,

provided that %intl) In?t t~*w(tx) = 0. By the above (A — /\1)3M1(3)(A)w = w, and therefore
_>

the solution of (9) in this case can be written in the form
1 *
U(z) = -A (MMP (A (2). (15)

Next, we find out conditions which must be imposed on the function V(x), so we can
use formulas (12), (14) and (15). First, the following limits must be true %ir% t=V (tx) = 0,
_>

where ¢ = 1,2, 3 for the different roots, or yr% In"t =V (tz) = 0 (k = 1,2) in the case of
—

multiple roots. Second, to ensure that the function U(x) has the necessary smoothness to
perform the boundary conditions of the problem, it is necessary that the operator A*(A)
is applicable to the function V(z) in S. Due to the structure of the operator A*(A) it is
possible if v; € C%(S) and v, € C*(S). Such smoothness of the functions v, () and vy(x)
is provided if ¢; € C%*(9S) and @y € C'(AS). This is accomplished.

Let us return to the conditions

limt MV (tz) =0, i=1,2,3, (16)
t—0
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which in fact are imposed on the functions ¢; € C?(9S) and ¢, € C1(dS). Note that
due to the smoothness of the functions V' (x), for \; ¢ Ny conditions linol t=iV (tx) = 0
ﬁ

and Pr% In*t =V (tz) = 0 are equivalent. If \; < 0, then conditions (16) are fulfilled.
%

Otherwise, i.e. if at least for one ¢ we have A; > 0, then (16) can be not fulfilled for some
functions 1 and .

Let all the roots of A; be different. Change the form of the solution (12) in case A; > 0.
At first note that if tlnog t~iw(tx) = 0, then for the operator

M;(ANv(z) = — /100 t= " y(tr) dt,

where w(z) € C'(R"), the equalities similar to (10) are true

—

(A — AL (A)w = A, / 3Ly (L) dt — / Ny (t) dt =, / My (t) dt—

1 1 1

—tMw(t)] T =\ / N w(tr) dt = — tNw(te)| 7 = w().
1

For example, if |a| < A; then we have

o0 o

o
1 ’0"_)‘1'7

— o0 led=Aq
M;(AN)z® = —:L‘a/ e (17)
1

la] — A

Qn

where 2% = 27" ... 28" u |a| = aq + - - - + ay, i.e. the operator ]\//.TZ(A) is applicable to the
polynomial z%. Change formula (12). Let n; = [\;]. We represent the function V() in the
form

n;  hg n;  hi
Vi) =Y > VI H (2)+ (v<x> >3 V;PHSM) =V (z) + V) (),

k=0 j=1 k=0 j=1

where {Hy(r?(x), m € Ny, 1 = 1,hk} is a complete orthogonal system of homogeneous

harmonic polynomials on 95 [15], and Vk,(j ) are expansion coefficients of the function V(x)
by this system. It is clear that if n; = [\;] < 0 then V{”(z) = 0 and thus V,” (z) = V().
Consider the expression

Ui() = bid () (MWW (@) + M)V (@) (18)

Since Vl(i) (x) is a polynomial of degree n;, then for each its term of the form Vk(j)ngj)(x)
we have k — \; <n; — \; = [\] — A < 0 (no equals sign, because the numbers \; are not
integer) and hence by virtue of (17) the operator ]\Z(A) is applicable to the polynomial
V{(z). Hence —\; +ng+1 = —\; + [Ai]+1 > 0, then =2V (t2) ~o Ao 1y D (1) 5
as t — 0. So, the operator M;(A) is applicable to the function \@(i)(w). Thus expression
(18) makes sense.

By properties of the operators ]\Z(A) and M;(A) the following equalities hold

ANUi(w) =AM A*(A) (MM (@) + M)V () =
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b (T ) —

= ebi(A = 2) (A = A) (V@) + Vi (@)) = ebi(A = Aa)(A = A3)V.
It means that the following function
U(x) = Uy(z) 4+ Us(z) + Us(x) (19)

satisfies the following equality
3
AMNU =" ANU(x) = (chi(A = Ao)(A = As) + cba(A — M) (A = \g) +
i=1
This means that the function U(x) from (19) is a solution of (9) in S. Therefore the
function u(z) = ug(x) + |z|*ui () is a solution of (5) — (6).
In the case of duple roots A\; = Ay > 0 together with the operator M;(A) it is necessary
to consider the operator

—~

M2 (Ayv(z) = /1 Int ¢t to(tx) dt,

for which in the case of a differentiable function w(z) € C*'(R"™) the equalities hold
(A = M)MP (Nw = —t M w(tz)|™ + My (A)w = M (A)w(z)

and thus (A — /\1)2]\71(2)(/\)211 = w. For example, when |a| < A; we have

o o 00 al—X\ o0
M (A)a” = 2 / It ol g = = / It drel-h = go B0
1 laf = Ay lal = A1 |4

% o0 1 — 1
- fol=d-tg — — = A (A)2® = ———
e o] = M = o

and hence the operator J\/Zl(Q)(A) is applicable to the polynomial Vl(l)(x). The solution of
(9) can be represented in the form

U(z) = Uy(z) + U () + Us(a), (20)

where the functions Uy (z) and Us(x) are defined in (18), and the function U () is written
in the form
2 x TF2 1 2 1
U @) = boA"(8) (P () (@) + MP W)V (@)

In the case of triple roots A\ = Ay = A3 > 0 the solution of (9) has the form

UGe) = - 4() (VP (@) + PV @) (1)
where ]/\4\1(3) (Av(z) = -1 01 In?t t~~'y(tx) dt, and the operator Ml(s)(A), the functions
Vl(l)(:v) and VQ(l)(x) are defined as above. Thus, the solution of (9) in S is constructed
in all cases of the roots of polynomial A(X). After finding the solution of (9) that are
harmonic functions ug(x) and wuy(z), a solution of (5) — (6) can be written in the form
u(z) = uo(z) + |z|*us ().

-
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3. Existence of Conditional Solutions

Consider the case of problem (5) — (6) which is not investigated in Theorem 2, when
for some m € Ny the equality A(m) = 0 holds. Problem (1) - (2) with nonhomogeneous
biharmonic equation is considered in [18].

Theorem 3. Let for some m € Ny the equality A(m) = 0 hold. Then a solution of (5) — (6)
from the class u € C?(S) ezists if and only if the functions o, € C*(9S) and v, € C*(IS)
satisfy the equalities

(@) (@ (m)en (@) + g2(m)ps() ds, = 0, (22)

where Hy,(x) is an arbitrary homogeneous harmonic polynomial of degree m, and the vector

(312:113) is an arbitrary solution of the system of algebraic equations
2

ago + aptm ap m "
ago + (M + 2)agr + (2n + 4m)age  (m + 2)ay; + (2n + 4m)(a1z + mas3)
q1(m)
X =0. (23
( ga(m) ) (23)
Proof. Solution of problem (5) — (6) constructed in Theorem 2 under the conditions of the

present theorem is not suitable. It must be a little changed. Consider equation (9). We
expand the function V(x) onto two terms V' (z) = V(x) + V,,(x), where

hm,
r) =Y PWH(x). (24)
=1

We find conditions under which (9) has a solution in a particular case, when the
right-hand side is a monomial of the form Vm(x) = Pfrf)Hr(ﬁ)(:c), where

PO — v ( Jos Hu' (x)1(x) ds, )
I, 05 \ Jos Hn' (2)2(2) ds,

By the homogeneity of the operator A(A) the solution of (9) in this case may have
only the form U, (z) = DY (x). Substituting the polynomial Uy, (z) = Q% HY (z) to
(9) we have

ANQRHL) (x) = H) (2) A(m)QYy) = H () Py,

m m

and consequently the following equality should be true
A(m)Qy) = By (25)

It is known that the obtained system of algebraic equations has a solution only if the
right-hand side P s orthogonal to zeros of the conjugated system AT (m)Q = 0, i.e. to

q1(m)

all vectors ( ) from the theorem’s conditions

q2(m)
; ds q1(m) ;
PT(;) ( q(m ) fas (z)d 50 . ( = qi(m Hn;) x)p1(x) ds,+
Q2( ) fas )dSI q2(m) o 1( ) ( ) 1( )
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[ amE @) ds = | B @ma @) + am)e) ds =0

By virtue of (22) this condition is satisfied. Therefore a solution of (25) exists. Going
through the all terms in sum (24) and taking advantage of the theorem’s conditions, we
conclude that a solution of (9) for V(z) = V,,(z) exists. We denote it as U,,(x). After that,
if the polynomial A(X) has no other roots in Ny, then by Theorem 2 we solve equation (9)
for V(z) = V(z) and add the resulting solutions U(z) = Uy,(z)+ U(x). The function U(z)
is a solution of (9) in S, and hence problem (5) — (6) has a solution. If the polynomial A())
has also other roots in Ny except number m, then we proceed with the function ‘7(:{:) in a

similar way, as we did above with the function V' (z). Thus, for each root of the polynomial
A(X) from Ny conditions (22) must be satisfied.

0
4. Particular Cases of the Problem

1. Riquier — Neumann problem: let ag; # 0, ajz # 0 (all other coefficients are equal
to zero), then

0 0
A =0,1€8; ay—u ) = p1(8), a3 =—Au

- - (85 = oo(s), s€dS.  (26)

The uniqueness conditions of this problem have the form A(X\) = A*(2n + 4\)ag a3
and hence A(0) = 0. The algebraic system (3) has the form ( 8 2%01 gl ) =0, and
2
its solution can be written in the form Cy = 0, C] is an arbitrary constant. By Theorem
2 solution of (26) is unique up to a constant u(z) = C1Hy(z) = C}.
For the existence of solutions of (26) consider (23) for m = 0, ( 2201 8 )( Z;Egg )—O,
and hence ¢,(0) = 0. In this case the space of zeros of system (23) is one-dimensional and is

spanned by the vector . Therefore, the existence condition (22) of solutions of (26)

0
1
has the form faS wo(z) ds, = 0. For example, let agy = a13 = 1 and ¢ = 0, o = 1. The
obtained above existence condition for the problem’s solution is not fulfilled. Make sure
that a solution of (26) in this case does not exist. From the second boundary condition
of problem (26) follows that for solution u(z) = ug(z) + |x|*ui(z) (see Lemma 1) of this

problem the following equalities must be fulfilled

0 0?
Wy, = ds, = —(2n+4A)u :z:dsx:él/ —ui(x)ds, =0,
[ ds= [ en+anju [ Sule)

which is not true. Here it was taken into account that the integral on 0S of the normal
derivatives of harmonic in S functions is equal to zero (see [17]). Therefore (26) has no
solution.

2. For problem (5) — (6) if ag2 = 0 and a;; = 0 we have

| Goo + a01/\ 2&01 .
AN=1T07 @n+ aNan + A@n + WNayg | 20 AN @0+ A0 (e Aaws).
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Let us take in (2) ago = —2, apn = 1, a2 = —3, a13 = 1, i.e. consider the problem
A*u=0,z€S8;
du dAu (27)
L —3A . = .
u+ e 01(8), —3Au+ 50 |os wa(s), s € 0S
In this case A(X) = (2n +4X)(A — 2)(A — 3) and hence A(2) =0 and A(3) = 0.
B 0 2 i\ _
For m = 2 system (3) has the form ( 0 —(2n+8) ) ( O, ) = 0 and therefore Cy =

0, C; being an arbitrary constant, is its solution. Thus the polynomial uy(z) = CyHs(2)
is a solution of the homogeneous problem (27).

If m = 3, then the system of (3) takes the form ( (1) (2) ) ( gl = 0 and hence
2
C1 = —2C5, (4 being an arbitrary constant, is its solution. Hence the polynomial us(z) =

Co(|z|* — 3)Hs(z) is also a solution of the homogeneous problem (27).
For the existence of solutions of (27) consider system (23)

(" s am ) (ol ) =0

form:2andm:3.Letm:2,thenwehave(O 0 )(ql(Q)):O,and

2 —(2n+38) 72(2)
hence ¢1(2) — (n + 4)g2(2) = 0. In this case the space of zeros of (23) is one-dimensional
and is spanned by the vector " T 4 . So, the first condition of existence of solutions

to (27) has the form [, ¢ Ho(x)((n 4 4)¢1(2) + @a(2)) ds, = 0.

Let m = 3, then we obtain Lo a(3) ) _ 0, and hence ¢;(3) = 0. In this case
30 ¢2(3)

the space of zeros of (23) is also one-dimensional and is spanned by the vector ( (1) . S0

the second condition of existence of solutions to (27) has the form [, Hs(z)p2(x) ds, = 0.
Thus, (27) has a solution if

Hy(z)((n + 4)pr(2) + pa(2)) dse = 0, Hy(z)ps(x) dsy = 0, (28)
as as

where Hy(z) and Hs(z) are homogeneous harmonic polynomials of degrees 2 and 3.

For example, let n > 2, ¢; = s150 and @9 = 0. If a solution of (27) exists, then
it takes the form u(z) = uo(z) + |z|*u1(z) (see Lemma 1). From the second boundary
condition we have (2n + 4A)(A — 3)ui(z) = 0, whence (A — 3)u;(z) = 0 and therefore
uy(x) = Hs(x). By virtue of the first boundary condition the function ug(z) should be
such that (a% - 2> (uo(z) + |z|*Hs(z)) ’a = $189 and hence (A —2)ug(x) = 129 —3H3(x),

s
x € S. This equation has no solution in harmonic functions in S because a harmonic
function on the left-hand side (A — 2)ug(x) does not contain the second order terms in

its expansion at the original, but on the right-hand side such terms are present. Note
that in this case the first condition from (28) is not fulfilled for Hy(z) = z125 because

Jog xix5 ds, # 0.
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OB O/ITHOM MATEMATUNYECKON MO/IEJIN,
OIIMCHIBAEMON KPAEBOI 3AJTAYEN
TIJISI BUTAPMOHUNYECKOT'O YPABHEHI Y

B.B. Kapawux, B.T. Topebex

B nmamnoit pabore paccMarpuBaeTcs MaTEMATHIECKAs MOETDb, OMUChIBaeMas 0000IEH-
HOU TpeTheil KPaeBoil 3aJa9u Jisi OJHOPOJHOTO OUTapMOHWYECKOTO YPABHEHWS B IApe C
FPAHUYHBIME OIEPATOPAME JI0 TPETHETO MOPSIIKA, COAEPIKAIINE HOPMAJIhHBIE TTPOU3BOIHBIE
U Jlanjacuan. YacTHBIMU CAy9asiMU PACCMATPUBAEMON MATEMATHIECKON MOIE/U SIBISIOTCS
KJIACCUIECKTE MOJIEN, OMUChiBaeMble 3agadamu Jdupuxie, Pukbe n Pobuna, crieKTpaabHast
zaga4da CTeKIoBa, a TaKKe MHOTHE JIPYTHE MATEMATHIECKHe MOJIEIH, TIOPOK AEHHbIE ITUMU
CPAHWYHBIMH YCJIOBUSIMU. JIOKA3aHBI TBe TEOpEeMbI CYIIECTBOBAHUS PACCMATPUBAEMON 3a-
Magu. YCJIOBUS CYIIECTBOBAHNS TIOIYYEHBI B BUJIE OPTOrOHAJIBHOCTY HA IPAHUIIE HEKOTOPOH
JINHEHHON KOMOWHAIINN I'PAHUYHBIX (DYHKIUN OJHOPOIHBIM TaPMOHUYECKUM MHOTOUTIEHAM
3aJIAHHOTO TTOpsifKa. TlomydeHHbie pe3yabTaThl TPOULTIOCTPUPOBAHBI HEKOTOPHIMU YACTHBI-
MH CIIy9adaMu OOIITei 3aIa<m.

Karoueante c106a: Mamemamuieckas Mooess; 6uzapMOHUNECKOE YPABHEHUE; eDAHUYHAA

3adana; onepamop Jlanaaca.
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