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In this paper mathematical model described by a generalized third boundary value

problem for the homogeneous biharmonic equation in the unit ball with boundary operators

up to the third order containing normal derivatives and Laplacian is investigated. Particular

cases of the considered mathematical model are the classical models described by Dirichlet,

Riquier, and Robin problems, and the Steklov spectral problem, as well as many other

mathematical models generated by these boundary conditions. Two existence theorems

for the solution of the problem are proved. Existence conditions are obtained in the

form of orthogonality on the boundary of some linear combination of boundary functions

to homogeneous harmonic polynomials of a particular order. The obtained results are

illustrated by some special cases of the general problem.
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Introduction

A signi�cant number of mathematical models in physics and engineering lead to partial
di�erential equations. The steady processes of various physical nature are described by the
partial di�erential equations of elliptic type. One of the important special cases of fourth
order elliptic equations is the biharmonic equation ∆2u(x) = f(x).

Investigation of mathematical models of problems of the plane deformation of the
elasticity theory in many cases is reduced to integration of the biharmonic equation
with the appropriate boundary conditions and under some uniqueness conditions for the
unknown function.

Moreover investigation of many mathematical models of continuum mechanics are
reduced to solving the harmonic and biharmonic equations. However the convenient
analytical expressions for the solutions are obtained only for the certain domains of
particular forms. Application of biharmonic problems in mathematical models of mechanics
and physics can be found in the numerous scienti�c investigations (see, for example, [1�3]).

Multiple applications of boundary value problems for the biharmonic equation
in mathematical models of mechanics and physics encourage investigation of various
formulations of boundary value problems for the biharmonic equation. The class of
biharmonic functions includes a class of harmonic functions and is a subclass of
polyharmonic functions. One of the �rst important works on the biharmonic equation
is the article by Almansi [4]. Following this work, there was a big interest in studying of
boundary value problems for the biharmonic equation (see [5�7]).

The Dirichlet problem (see [8]) is a well known boundary value problem for biharmonic
equation. In recent years other types of boundary value problems for the biharmonic
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equation, such as the problems by Riquier (see [9]), by Neumann (see [10�12]), by Robin
and etc are actively studied. In the spectral theory the Steklov spectral problem is of some
interest.

The present paper is organized as follows. In Section 1.for the biharmonic equation in
the unit ball a boundary value problem (1) � (2) with the boundary conditions of general
type, called by us as a generalized third boundary value problem is formulated. Particular
cases of the problem are considered in Section 4. In Section 2, namely in Theorem 2, the
conditions of unconditional solvability of the problem for the homogeneous biharmonic
equation are found. These conditions coincide with the conditions of uniqueness from
Theorem 1. In Theorem 3 of Section 3 the case, when the conditions of Theorem 2 are not
ful�lled, but a solution of the considered problem still exists, are obtained.

1. Statement of a Problem

Let S = {x ∈ Rn : |x| < 1} be an n-dimensional unit ball in the Euclidean space Rn

with the norm |x| =
√
x21 + x22 + ...+ x2n, and ∂S = {x ∈ Rn : |x| = 1} be an unit sphere.

In S we consider the following boundary value problem for the biharmonic equation

∆2u = f(x), x ∈ S, (1)

a00u+ a01
∂
∂ν
u+ a02∆u

∣∣∣
∂S

= φ1(s), s ∈ ∂S,

a11
∂
∂ν
u+ a12∆u+ a13

∂
∂ν
∆u
∣∣∣
∂S

= φ2(s), s ∈ ∂S,
(2)

where ∂
∂ν

is the outside normal derivative, a0j and a1j where j = 1, 2, 3 are real constants,
and f(x), φ1(x), φ2(x) are de�ned function, smoothness of which will be given below. As
a solution of problem (1) � (2) we consider a biharmonic in S function u(x) from the class
u ∈ C4 (S) ∩ C3(S) which satis�es on ∂S conditions (2).

Problem (1) � (2) generalizes the known Dirichlet problem (a00 ̸= 0, a11 ̸= 0, and all
other coe�cients are zero), Riquier problem (a00 ̸= 0, a12 ̸= 0, and all other coe�cients are
zero), but does not generalize the Neumann boundary value problem. If a00 ̸= 0, a12 > 0,
a11 < 0, and all other coe�cients vanish, then conditions (2) coincide with the Steklov
conditions [13]. In [14] uniqueness of a solution for (1) � (2) was proved.

Theorem 1. Solution of problem (1) � (2) is unique if and only if the following polynomial

∆(λ) =

∣∣∣∣ a00 + a01λ 2a01 + (2n+ 4λ)a02
λa11 2a11 + (2n+ 4λ)a12 + λ(2n+ 4λ)a13

∣∣∣∣
has no roots in N0 = N ∪ {0}. If ∆(m) = 0, then the homogeneous problem (1) � (2) has
a solution

u(x) =
(
C2|x|2 + C1 − C2

)
Hm(x),

where Hm(x) is an arbitrary homogeneous harmonic polynomial of degree m, and the
constants C1, C2 are found from the system of algebraic equations(

a00 +ma01 2a01 + (2n+ 4m)a02
ma11 2a11 + (2n+ 4m)a12 +m(2n+ 4m)a13

)(
C1

C2

)
= 0. (3)
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2. Unconditional Existence of a Solution

One auxiliary assertion in which harmonic functions from the Almansi representation
are explicitly de�ned can be easily proved.

Lemma 1. Let u(x) be a biharmonic function in S, then the following functions

u0(x) = u(x)− |x|2

2

∫ 1

0

tn−1∆u(t2x) dt, u1(x) =
1

2

∫ 1

0

tn−1∆u(t2x) dt (4)

are harmonic in S and such that the Almansi representation u(x) = u0(x)+|x|2u1(x) holds
in S.

Theorem 2. Solution of the problem

∆2u = 0, x ∈ S, (5)

a00u+ a01
∂
∂ν
u+ a02∆u

∣∣∣
∂S

= φ1(s), x ∈ ∂S,

a11
∂
∂ν
u+ a12∆u+ a13

∂
∂ν
∆u
∣∣∣
∂S

= φ2(s), x ∈ ∂S,
(6)

from the class u ∈ C3(S) for arbitrary functions φ1 ∈ C2(∂S) and φ2 ∈ C1(∂S) exist, if
and only if the polynomial

∆(λ) =

∣∣∣∣ a00 + a01λ 2a01 + (2n+ 4λ)a02
a11λ 2a11 + (2n+ 4λ)a12 + λ(2n+ 4λ)a13

∣∣∣∣
has no roots in N0.

Proof. Consider the harmonic in S functions v1(x) and v2(x) such that for them the
equalities

v1(x)|∂S = φ1(s), s ∈ ∂S, v2(x)|∂S = φ2(s), s ∈ ∂S

hold, i.e. v1(x) and v2(x) are solutions of the Dirichlet problem for the Laplace equation
in S. By Lemma 1 for the biharmonic function u(x) the Almansi representation
holds. Let us �nd the functions u0(x) and u1(x) under which the biharmonic function
u(x) = u0(x) + |x|2u1(x) is a solution of (5) � (6). Consider the operators L1 and L2 from
the Theorem 1. Then, because of equality

∆
(
|x|2v(x)

)
= (2n+ 4Λ)v(x)

we have

L1u = L1 (u0(x) + |x|2u1(x)) = a00u+ a01Λu+ a02(2n+ 4Λ)u1,
L2u = L2 (u0(x) + |x|2u1(x)) = a11Λu+ a12(2n+ 4Λ)u1 + a13Λ(2n+ 4Λ)u1.

Taking the limit as x→ s ∈ ∂S, as in Theorem 1, we obtain

a00(u0 + u1) + a01 (Λu0 + (Λ + 2)u1) + a02(2n+ 4Λ) u1 = φ1(s),
a11 (Λu0 + (Λ + 2)u1) + a12(2n+ 4Λ)u1 + a13Λ(2n+ 4Λ)u1 = φ2(s).

(7)

By the uniqueness of the Dirichlet problem solution for the Laplace equation in S, we
conclude that equalities (7) can be extended to S
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a00(u0 + u1) + a01 (Λu0 + (Λ + 2)u1) + a02(2n+ 4Λ) u1 = v1(x),
a11 (Λu0 + (Λ + 2)u1) + a12(2n+ 4Λ)u1 + a13Λ(2n+ 4Λ)u1 = v2(x),

because by the properties of the operator Λ the functions on the left-hand side in the last
equalities are harmonic in S. We rewrite the resulting equations in the matrix form(

a00 + a01Λ a00 + (Λ + 2)a01 + (2n+ 4Λ)a02
a11Λ (Λ + 2)a11 + (2n+ 4Λ)(a12 + Λa13)

)(
u0
u1

)
=

(
v1
v2

)
. (8)

Equation (8) is a system of di�erential equations in harmonic functions
in S. Let us show that (8) holds also in S. By the theorem's condition
we have u(x) ∈ C3(S), then according to formulas (4) we obtain
u0(x), u1(x) ∈ C1(S). Taking into account that Λu1 =

1
4
∆u− n

2
u1 (see Lemma 1) we obtain

Λu1(x) ∈ C1(S). However, because u0(x) ∈ C1(S) and Λu1(x) ∈ C1(S) equation (8)
is ful�lled in S. So, from the above reasoning we can conclude that if the function
u(x) = u0(x) + |x|2u1(x) ∈ C3(S) is a solution of the problem (5) � (6), then harmonic
functions u0(x) and u1(x) satisfy (8) in S.

Converse assertion also holds, i.e. if the harmonic functions u0(x) ∈ C1(S) and
u1(x) ∈ C1(S), Λu1(x) ∈ C1(S) satisfy (8) in S, then they satisfy (7), and therefore the
function u(x) = u0(x)+ |x|2u1(x) is a solution of (5) � (6). Since ∆u(x) = (2n+4Λ)u1(x),
then u(x) ∈ C3(S). Thus, problem (5) � (6) and equation (8) in S are equivalent.

Consider the following matrix

A(λ) =

(
a00 + a01λ a00 + (λ+ 2)a01 + (2n+ 4λ)a02
a11λ (λ+ 2)a11 + (2n+ 4λ)a12 + λ(2n+ 4λ)a13

)
,

depending on a parameter λ ∈ R. It is easy to see that detA(λ) = ∆(λ) and
deg detA(λ) = 3. Therefore, under the conditions of the theorem the matrix A(λ) is non-
singular for λ ∈ N0. System (8) can be written in the form

A(Λ)U(x) = V (x), x ∈ S, (9)

where U =

(
u0
u1

)
and V =

(
v1
v2

)
. We expand the polynomial detA(λ)

detA(λ) = ∆(λ) = c(λ− λ1)(λ− λ2)(λ− λ3),

where λi ∈ C, i = 1, 2, 3 are the roots of the polynomial ∆(λ).
1) Let all the roots λi of the polynomial ∆(λ) be di�erent. It is well known that in

this case
1

∆(λ)
=

b1
λ− λ1

+
b2

λ− λ2
+

b3
λ− λ3

,

where bi ∈ R. The inverse matrix A−1(λ) to A(λ) has the form A−1(λ) = 1
∆(λ)

A∗(λ), where

A∗(λ) =

(
(λ+ 2)a11 + (2n+ 4λ)(a12 + λa13) −a00 − (λ+ 2)a01 − (2n+ 4λ)a02

−a11λ a00 + a01λ

)
.

Consider the following operators depending on the roots λi (see [16])

Mi(Λ)v(x) =

∫ 1

0

t−λi−1v(tx) dt,

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2016. Ò. 9, � 4. Ñ. 40�52

43



V.V. Karachik, B.T. Torebek

where i = 1, 2, 3. If lim
t→0

t−λiw(tx) = 0, then it is easy to see that for a di�erentiable function

w(x) the following equalities hold

(Λ− λi)Mi(Λ)w = (Λ− λi)
∫ 1

0
t−λi−1w(tx)dt = −λi

∫ 1

0
t−λi−1w(tx)dt+

+
∫ 1

0
t−λi

∑n
i=1 xiwxi

(tx)dt = −λi
∫ 1

0
t−λi−1w(tx)dt+

∫ 1

0
t−λiwt(tx)dt =

−λi
∫ 1

0
t−λi−1w(tx)dt+ t−λiw(tx)

∣∣1
0
+ λi

∫ 1

0
t−λi−1w(tx)dt = t−λiw(tx)

∣∣1
0
= w(x).

(10)

Since the following equalities are true

1 = ∆(λ)
(

b1
λ−λ1

+ b2
λ−λ2

+ b3
λ−λ3

)
= b1∆(λ)

λ−λ1
+ b2∆(λ)

λ−λ2
+ b3∆(λ)

λ−λ3
=

= cb1(λ− λ2)(λ− λ3) + cb2(λ− λ1)(λ− λ3) + cb3(λ− λ1)(λ− λ2),

then for the function w ∈ C2(S) such that lim
t→0

t−λiw(tx) = 0, i = 1, 2, 3 we have

∆(Λ) (b1M1(Λ) + b2M2(Λ) + b3M3(Λ))w =
(
cb1(Λ− λ2)(Λ− λ3)+

+ cb2(Λ− λ1)(Λ− λ3) + cb3(Λ− λ1)(Λ− λ2)
)
w = 1 · w. (11)

Therefore, if the function V (x) satis�es the conditions lim
t→0

t−λiV (tx) = 0, where i =

1, 2, 3, then the solution of (9) can be written in the form

U(x) = A∗(Λ) (b1M1(Λ) + b2M2(Λ) + b3M3(Λ))V (x). (12)

Indeed, the function U(x), which is found from (12) by virtue of (11) satis�es (9) in
S, i.e.

A(Λ)U(x) = A(Λ)A∗(Λ) (b1M1(Λ) + b2M2(Λ) + b3M3(Λ))V (x) =

= ∆(Λ) (b1M1(Λ) + b2M2(Λ) + b3M3(Λ))V (x) = V (x).

2) Let two roots of the polynomial ∆(λ) be equal λ1 = λ2, i.e. ∆(λ) = c(λ− λ1)
2(λ−

λ3). It is known that in this case 1
∆(λ)

= b1
λ−λ1

+ b2
(λ−λ1)

2 +
b3

λ−λ3
, and hence

1 = ∆(λ)

(
b1

λ− λ1
+

b2

(λ− λ1)
2 +

b3
λ− λ3

)
=
b1∆(λ)

λ− λ1
+

b2∆(λ)

(λ− λ1)
2 +

b3∆(λ)

λ− λ3
=

= cb1(λ− λ1)(λ− λ3) + cb2(λ− λ3) + cb3(λ− λ1)
2. (13)

Consider the operator

M
(2)
1 (Λ)v(x) = −

∫ 1

0

ln t t−λ1−1v(tx) dt.

It is easy to see that if the function w(x) is di�erentiable, then the equalities

(Λ− λ1)M
(2)
1 (Λ)w =M1(Λ)w + ln tt−λ1w(tx)

∣∣1
0
=M1(Λ)w,
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hold and hence (Λ− λ1)
2M

(2)
1 (Λ)w = w, if lim

t→0
ln t t−λ1w(tx) = 0. Due to (13) a function

w ∈ C2(S) such that lim
t→0

ln t t−λ1w(tx) = 0 satis�es the equality

∆(Λ)
(
b1M1(Λ) + b2M

(2)
1 (Λ) + b3M3(Λ)

)
w =

=
(
cb1(Λ− λ1)(Λ− λ3) + cb2(Λ− λ3) + cb3(Λ− λ1)

2)w = 1 · w.

So, if λ1 = λ2 and the function V (x) satis�es the conditions lim
t→0

ln tt−λ1V (tx) = 0 and

lim
t→0

t−λ3V (tx) = 0, then the solution of (9) can be written as

U(x) = A∗(Λ)
(
b1M1(Λ) + b2M

(2)
1 (Λ) + b3M3(Λ)

)
V (x). (14)

3) Let the three roots of the polynomial ∆(λ) be equal, i.e. ∆(λ) = c(λ− λ1)
3. We

consider the operator

M
(3)
1 (Λ)v(x) =

1

2

∫ 1

0

ln2t t−λ1−1v(tx) dt.

It is easy to see that if the function w(x) is a di�erentiable one, then we have

(Λ− λ1)M
(3)
1 (Λ)w = (Λ− λ1)

1

2

∫ 1

0

ln2t t−λ1−1w(tx)dt =

= −λ1
2

∫ 1

0

ln2t t−λ1−1w(tx) dt+
1

2

∫ 1

0

ln2t t−λ1wt(tx)dt =

= −λ1
2

∫ 1

0

ln2t t−λ1−1w(tx)dt+
1

2
ln2tt−λ1w(tx)

∣∣1
0
+
λ1
2

∫ 1

0

ln2tt−λ1−1w(tx)dt−

−
∫ 1

0

ln t t−λ1−1w(tx)dt =M
(2)
1 (Λ)w +

1

2
ln2tt−λ1w(tx)

∣∣1
0
=M

(2)
1 (Λ)w,

provided that lim
t→0

ln2t t−λ1w(tx) = 0. By the above (Λ− λ1)
3M

(3)
1 (Λ)w = w, and therefore

the solution of (9) in this case can be written in the form

U(x) =
1

c
A∗(Λ)M

(3)
1 (Λ)V (x). (15)

Next, we �nd out conditions which must be imposed on the function V (x), so we can
use formulas (12), (14) and (15). First, the following limits must be true lim

t→0
t−λiV (tx) = 0,

where i = 1, 2, 3 for the di�erent roots, or lim
t→0

lnkt t−λ1V (tx) = 0 (k = 1, 2) in the case of

multiple roots. Second, to ensure that the function U(x) has the necessary smoothness to
perform the boundary conditions of the problem, it is necessary that the operator A∗(Λ)
is applicable to the function V (x) in S. Due to the structure of the operator A∗(Λ) it is
possible if v1 ∈ C2(S) and v2 ∈ C1(S). Such smoothness of the functions v1(x) and v2(x)
is provided if φ1 ∈ C2(∂S) and φ2 ∈ C1(∂S). This is accomplished.

Let us return to the conditions

lim
t→0

t−λiV (tx) = 0, i = 1, 2, 3, (16)

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
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which in fact are imposed on the functions φ1 ∈ C2(∂S) and φ2 ∈ C1(∂S). Note that
due to the smoothness of the functions V (x), for λi /∈ N0 conditions lim

t→0
t−λiV (tx) = 0

and lim
t→0

lnkt t−λiV (tx) = 0 are equivalent. If λi < 0, then conditions (16) are ful�lled.

Otherwise, i.e. if at least for one i we have λi > 0, then (16) can be not ful�lled for some
functions φ1 and φ2.

Let all the roots of λi be di�erent. Change the form of the solution (12) in case λi > 0.
At �rst note that if lim

t→∞
t−λiw(tx) = 0, then for the operator

M̂i(Λ)v(x) = −
∫ ∞

1

t−λi−1v(tx) dt,

where w(x) ∈ C1(Rn), the equalities similar to (10) are true

(Λ− λi)M̂i(Λ)w = λi

∫ ∞

1

t−λi−1w(tx) dt−
∫ ∞

1

t−λiwt(tx) dt =λi

∫ ∞

1

t−λi−1w(tx) dt−

−t−λiw(tx)
∣∣∞
1
− λi

∫ ∞

1

t−λi−1w(tx) dt =− t−λiw(tx)
∣∣∞
1

= w(x).

For example, if |α| < λi then we have

M̂i(Λ)x
α = −xα

∫ ∞

1

t|α|−λi−1dt = −xα t|α|−λi

|α| − λi

∣∣∣∣∞
1

=
xα

|α| − λi
, (17)

where xα = xα1
1 . . . xαn

n è |α| = α1 + · · · + αn, i.e. the operator M̂i(Λ) is applicable to the
polynomial xα. Change formula (12). Let ni = [λi]. We represent the function V (x) in the
form

V (x) =

ni∑
k=0

hk∑
j=1

V
(j)
k H

(j)
k (x) +

(
V (x)−

ni∑
k=0

hk∑
j=1

V
(j)
k H

(j)
k (x)

)
≡ V

(i)
1 (x) + V

(i)
2 (x),

where
{
H

(i)
m (x), m ∈ N0, i = 1, hk

}
is a complete orthogonal system of homogeneous

harmonic polynomials on ∂S [15], and V
(j)
k are expansion coe�cients of the function V (x)

by this system. It is clear that if ni = [λi] < 0 then V
(i)
1 (x) = 0 and thus V

(i)
2 (x) = V (x).

Consider the expression

Ui(x) = biA
∗(Λ)

(
M̂i(Λ)V

(i)
1 (x) +Mi(Λ)V

(i)
2 (x)

)
. (18)

Since V
(i)
1 (x) is a polynomial of degree ni, then for each its term of the form V

(j)
k H

(j)
k (x)

we have k − λi ≤ ni − λi = [λi]− λi < 0 (no equals sign, because the numbers λi are not

integer) and hence by virtue of (17) the operator M̂i(Λ) is applicable to the polynomial

V
(i)
1 (x). Hence −λi+n0+1 = −λi+[λi]+1 > 0, then t−λiV

(i)
2 (tx) ∼ t−λi+n0+1V

(i)
2 (x) → 0

as t → 0. So, the operator Mi(Λ) is applicable to the function V
(i)
2 (x). Thus expression

(18) makes sense.

By properties of the operators M̂i(Λ) and Mi(Λ) the following equalities hold

A(Λ)Ui(x) = biA(Λ)A
∗(Λ)

(
M̂i(Λ)V

(i)
1 (x) +Mi(Λ)V

(i)
2 (x)

)
=
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= bi∆(Λ)
(
M̂i(Λ)V

(i)
1 (x) +Mi(Λ)V

(i)
2 (x)

)
=

= cbi(Λ− λ2)(Λ− λ3)
(
V

(i)
1 (x) + V

(i)
2 (x)

)
= cbi(Λ− λ2)(Λ− λ3)V.

It means that the following function

U(x) = U1(x) + U2(x) + U3(x) (19)

satis�es the following equality

A(Λ)U =
3∑

i=1

A(Λ)Ui(x) = (cb1(Λ− λ2)(Λ− λ3) + cb2(Λ− λ1)(Λ− λ3) +

+cb3(Λ− λ1)(Λ− λ2))V = 1 · V = V.

This means that the function U(x) from (19) is a solution of (9) in S. Therefore the
function u(x) = u0(x) + |x|2u1(x) is a solution of (5) � (6).

In the case of duple roots λ1 = λ2 > 0 together with the operator M̂1(Λ) it is necessary
to consider the operator

M̂
(2)
1 (Λ)v(x) =

∫ ∞

1

ln t t−λi−1v(tx) dt,

for which in the case of a di�erentiable function w(x) ∈ C1(Rn) the equalities hold

(Λ− λ1)M̂
(2)
1 (Λ)w = −t−λiw(tx)

∣∣∞
1
+ M̂1(Λ)w = M̂1(Λ)w(x)

and thus (Λ− λ1)
2M̂

(2)
1 (Λ)w = w. For example, when |α| < λ1 we have

M̂
(2)
1 (Λ)xα = xα

∫ ∞

1

ln t t|α|−λ1−1 dt =
xα

|α| − λ1

∫ ∞

1

ln t dt|α|−λ1 = xα
t|α|−λ1 ln t

|α| − λ1

∣∣∣∣∞
1

−

− xα

|α| − λ1

∫ ∞

1

t|α|−λ1−1dt =
1

|α| − λ1
M̂1(Λ)x

α =
1

(|α| − λ1)
2

and hence the operator M̂
(2)
1 (Λ) is applicable to the polynomial V

(1)
1 (x). The solution of

(9) can be represented in the form

U(x) = U1(x) + U
(2)
1 (x) + U3(x), (20)

where the functions U1(x) and U3(x) are de�ned in (18), and the function U
(2)
1 (x) is written

in the form
U

(2)
1 (x) = b2A

∗(Λ)
(
M̂

(2)
1 (Λ)V

(1)
1 (x) +M

(2)
1 (Λ)V

(1)
2 (x)

)
.

In the case of triple roots λ1 = λ2 = λ3 > 0 the solution of (9) has the form

U(x) =
1

c
A∗(Λ)

(
M̂

(3)
1 (Λ)V

(1)
1 (x) +M

(3)
1 (Λ)V

(1)
2 (x)

)
, (21)

where M̂
(3)
1 (Λ)v(x) = −1

2

∫ 1

0
ln2t t−λ1−1v(tx) dt, and the operator M

(3)
1 (Λ), the functions

V
(1)
1 (x) and V

(1)
2 (x) are de�ned as above. Thus, the solution of (9) in S is constructed

in all cases of the roots of polynomial ∆(λ). After �nding the solution of (9) that are
harmonic functions u0(x) and u1(x), a solution of (5) � (6) can be written in the form
u(x) = u0(x) + |x|2u1(x).

2
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3. Existence of Conditional Solutions

Consider the case of problem (5) � (6) which is not investigated in Theorem 2, when
for some m ∈ N0 the equality ∆(m) = 0 holds. Problem (1) � (2) with nonhomogeneous
biharmonic equation is considered in [18].

Theorem 3. Let for some m ∈ N0 the equality ∆(m) = 0 hold. Then a solution of (5) � (6)
from the class u ∈ C3(S) exists if and only if the functions φ1 ∈ C2(∂S) and φ2 ∈ C1(∂S)
satisfy the equalities ∫

∂S

Hm(x) (q1(m)φ1(x) + q2(m)φ2(x)) dsx = 0, (22)

where Hm(x) is an arbitrary homogeneous harmonic polynomial of degree m, and the vector(
q1(m)
q2(m)

)
is an arbitrary solution of the system of algebraic equations

(
a00 + a01m a11m

a00 + (m+ 2)a01 + (2n+ 4m)a02 (m+ 2)a11 + (2n+ 4m)(a12 +ma13)

)
×

×
(
q1(m)
q2(m)

)
= 0. (23)

Proof. Solution of problem (5) � (6) constructed in Theorem 2 under the conditions of the
present theorem is not suitable. It must be a little changed. Consider equation (9). We

expand the function V (x) onto two terms V (x) = V̂ (x) + Vm(x), where

Vm(x) =
hm∑
i=1

P (i)
m H(i)

m (x). (24)

We �nd conditions under which (9) has a solution in a particular case, when the

right-hand side is a monomial of the form Vm(x) = P
(i)
m H

(i)
m (x), where

P (i)
m =

1

∥H(i)
m ∥2L2(∂S)

( ∫
∂S
H

(i)
m (x)φ1(x) dsx∫

∂S
H

(i)
m (x)φ2(x) dsx

)
.

By the homogeneity of the operator A(Λ) the solution of (9) in this case may have

only the form Um(x) = Q
(i)
mH

(i)
m (x). Substituting the polynomial Um(x) = Q

(i)
mH

(i)
m (x) to

(9) we have
A(Λ)Q(i)

mH
(i)
m (x) = H(i)

m (x)A(m)Q(i)
m = H(i)

m (x)P (i)
m ,

and consequently the following equality should be true

A(m)Q(i)
m = P (i)

m . (25)

It is known that the obtained system of algebraic equations has a solution only if the
right-hand side P

(i)
m is orthogonal to zeros of the conjugated system AT (m)Q = 0, i.e. to

all vectors
( q1(m)
q2(m)

)
from the theorem's conditions

P (i)
m ·

(
q1(m)
q2(m)

)
=

( ∫
∂S
H

(i)
m (x)φ1(x)d sx∫

∂S
H

(i)
m (x)φ2(x)d sx

)
·
(
q1(m)
q2(m)

)
=

∫
∂S

q1(m)H(i)
m (x)φ1(x) dsx+
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+

∫
∂S

q2(m)H(i)
m (x)φ2(x) dsx =

∫
∂S

H(i)
m (x) (q1(m)φ1(x) + q2(m)φ2(x)) dsx = 0.

By virtue of (22) this condition is satis�ed. Therefore a solution of (25) exists. Going
through the all terms in sum (24) and taking advantage of the theorem's conditions, we
conclude that a solution of (9) for V (x) = Vm(x) exists. We denote it as Um(x). After that,
if the polynomial ∆(λ) has no other roots in N0, then by Theorem 2 we solve equation (9)

for V (x) = V̂ (x) and add the resulting solutions U(x) = Um(x)+ Û(x). The function U(x)
is a solution of (9) in S, and hence problem (5) � (6) has a solution. If the polynomial ∆(λ)

has also other roots in N0 except number m, then we proceed with the function V̂ (x) in a
similar way, as we did above with the function V (x). Thus, for each root of the polynomial
∆(λ) from N0 conditions (22) must be satis�ed.

2

4. Particular Cases of the Problem

1. Riquier � Neumann problem: let a01 ̸= 0, a13 ̸= 0 (all other coe�cients are equal
to zero), then

∆2u = 0, x ∈ S; a01
∂

∂ν
u
∣∣∣
∂S

= φ1(s), a13
∂

∂ν
∆u
∣∣∣
∂S

= φ2(s), s ∈ ∂S. (26)

The uniqueness conditions of this problem have the form ∆(λ) = λ2(2n + 4λ)a01a13

and hence ∆(0) = 0. The algebraic system (3) has the form

(
0 2a01
0 0

)(
C1

C2

)
= 0, and

its solution can be written in the form C2 = 0, C1 is an arbitrary constant. By Theorem
2 solution of (26) is unique up to a constant u(x) = C1H0(x) = C1.

For the existence of solutions of (26) consider (23) form = 0,

(
0 0

2a01 0

)(
q1(0)
q2(0)

)
=0,

and hence q1(0) = 0. In this case the space of zeros of system (23) is one-dimensional and is

spanned by the vector

(
0
1

)
. Therefore, the existence condition (22) of solutions of (26)

has the form
∫
∂S
φ2(x) dsx = 0. For example, let a01 = a13 = 1 and φ1 = 0, φ2 = 1. The

obtained above existence condition for the problem's solution is not ful�lled. Make sure
that à solution of (26) in this case does not exist. From the second boundary condition
of problem (26) follows that for solution u(x) = u0(x) + |x|2u1(x) (see Lemma 1) of this
problem the following equalities must be ful�lled

ωn =

∫
∂S

dsx =

∫
∂S

∂

∂ν
(2n+ 4Λ)u1(x) dsx = 4

∫
∂S

∂2

∂ν2
u1(x) dsx = 0,

which is not true. Here it was taken into account that the integral on ∂S of the normal
derivatives of harmonic in S functions is equal to zero (see [17]). Therefore (26) has no
solution.

2. For problem (5) � (6) if a02 = 0 and a11 = 0 we have

∆(λ) =

∣∣∣∣ a00 + a01λ 2a01
0 (2n+ 4λ)a12 + λ(2n+ 4λ)a13

∣∣∣∣ = (2n+4λ)(a00 + λa01)(a12 + λa13).

Âåñòíèê ÞÓðÃÓ. Ñåðèÿ ≪Ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå
è ïðîãðàììèðîâàíèå≫ (Âåñòíèê ÞÓðÃÓ ÌÌÏ). 2016. Ò. 9, � 4. Ñ. 40�52

49



V.V. Karachik, B.T. Torebek

Let us take in (2) a00 = −2, a01 = 1, a12 = −3, a13 = 1, i.e. consider the problem

∆2u = 0, x ∈ S;

−2u+
∂u

∂ν

∣∣∣
∂S

= φ1(s), −3∆u+
∂∆u

∂ν

∣∣∣
∂S

= φ2(s), s ∈ ∂S.
(27)

In this case ∆(λ) = (2n+ 4λ)(λ− 2)(λ− 3) and hence ∆(2) = 0 and ∆(3) = 0.

For m = 2 system (3) has the form

(
0 2
0 −(2n+ 8)

)(
C1

C2

)
= 0 and therefore C2 =

0, C1 being an arbitrary constant, is its solution. Thus the polynomial u2(x) = C1H2(x)
is a solution of the homogeneous problem (27).

If m = 3, then the system of (3) takes the form

(
1 2
0 0

)(
C1

C2

)
= 0 and hence

C1 = −2C2, C2 being an arbitrary constant, is its solution. Hence the polynomial u3(x) =
C2(|x|2 − 3)H3(x) is also a solution of the homogeneous problem (27).

For the existence of solutions of (27) consider system (23)(
m− 2 0
m (m− 3)(2n+ 4m)

)(
q1(m)
q2(m)

)
= 0

for m = 2 and m = 3. Let m = 2, then we have

(
0 0
2 −(2n+ 8)

)(
q1(2)
q2(2)

)
= 0, and

hence q1(2) − (n + 4)q2(2) = 0. In this case the space of zeros of (23) is one-dimensional

and is spanned by the vector

(
n+ 4
1

)
. So, the �rst condition of existence of solutions

to (27) has the form
∫
∂S
H2(x)((n+ 4)φ1(x) + φ2(x)) dsx = 0.

Let m = 3, then we obtain

(
1 0
3 0

)(
q1(3)
q2(3)

)
= 0, and hence q1(3) = 0. In this case

the space of zeros of (23) is also one-dimensional and is spanned by the vector

(
0
1

)
. So

the second condition of existence of solutions to (27) has the form
∫
∂S
H3(x)φ2(x) dsx = 0.

Thus, (27) has a solution if∫
∂S

H2(x)((n+ 4)φ1(x) + φ2(x)) dsx = 0,

∫
∂S

H3(x)φ2(x) dsx = 0, (28)

where H2(x) and H3(x) are homogeneous harmonic polynomials of degrees 2 and 3.
For example, let n ≥ 2, φ1 = s1s2 and φ2 = 0. If a solution of (27) exists, then

it takes the form u(x) = u0(x) + |x|2u1(x) (see Lemma 1). From the second boundary
condition we have (2n + 4Λ)(Λ − 3)u1(x) = 0, whence (Λ − 3)u1(x) = 0 and therefore
u1(x) = H3(x). By virtue of the �rst boundary condition the function u0(x) should be

such that
(

∂
∂ν

−2
)(
u0(x)+ |x|2H3(x)

)∣∣∣
∂S

= s1s2 and hence (Λ−2)u0(x) = x1x2−3H3(x),

x ∈ S. This equation has no solution in harmonic functions in S because a harmonic
function on the left-hand side (Λ − 2)u0(x) does not contain the second order terms in
its expansion at the original, but on the right-hand side such terms are present. Note
that in this case the �rst condition from (28) is not ful�lled for H2(x) = x1x2 because∫
∂S
x21x

2
2 dsx ̸= 0.
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ÎÁ ÎÄÍÎÉ ÌÀÒÅÌÀÒÈ×ÅÑÊÎÉ ÌÎÄÅËÈ,
ÎÏÈÑÛÂÀÅÌÎÉ ÊÐÀÅÂÎÉ ÇÀÄÀ×ÅÉ
ÄËß ÁÈÃÀÐÌÎÍÈ×ÅÑÊÎÃÎ ÓÐÀÂÍÅÍÈß

Â.Â. Êàðà÷èê, Á.Ò. Òîðåáåê

Â äàííîé ðàáîòå ðàññìàòðèâàåòñÿ ìàòåìàòè÷åñêàÿ ìîäåëü, îïèñûâàåìàÿ îáîáùåí-

íîé òðåòüåé êðàåâîé çàäà÷è äëÿ îäíîðîäíîãî áèãàðìîíè÷åñêîãî óðàâíåíèÿ â øàðå ñ

ãðàíè÷íûìè îïåðàòîðàìè äî òðåòüåãî ïîðÿäêà, ñîäåðæàùèå íîðìàëüíûå ïðîèçâîäíûå

è ëàïëàñèàí. ×àñòíûìè ñëó÷àÿìè ðàññìàòðèâàåìîé ìàòåìàòè÷åñêîé ìîäåëè ÿâëÿþòñÿ

êëàññè÷åñêèå ìîäåëè, îïèñûâàåìûå çàäà÷àìè Äèðèõëå, Ðèêüå è Ðîáèíà, ñïåêòðàëüíàÿ

çàäà÷à Ñòåêëîâà, à òàêæå ìíîãèå äðóãèå ìàòåìàòè÷åñêèå ìîäåëè, ïîðîæäåííûå ýòèìè

ãðàíè÷íûìè óñëîâèÿìè. Äîêàçàíû äâå òåîðåìû ñóùåñòâîâàíèÿ ðàññìàòðèâàåìîé çà-

äà÷è. Óñëîâèÿ ñóùåñòâîâàíèÿ ïîëó÷åíû â âèäå îðòîãîíàëüíîñòè íà ãðàíèöå íåêîòîðîé

ëèíåéíîé êîìáèíàöèè ãðàíè÷íûõ ôóíêöèé îäíîðîäíûì ãàðìîíè÷åñêèì ìíîãî÷ëåíàì

çàäàííîãî ïîðÿäêà. Ïîëó÷åííûå ðåçóëüòàòû ïðîèëëþñòðèðîâàíû íåêîòîðûìè ÷àñòíû-

ìè ñëó÷àÿìè îáùåé çàäà÷è.
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