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NEURAL NET DECODERS FOR LINEAR BLOCK CODES
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The work is devoted to neural network decoders of linear block codes. Analytical
methods for calculating synaptic weights based on a generator and parity-check matrices are
considered. It is shown that to build a neural net decoder based on a parity-check matrix was
sufficiently four layers feedforward neural net. The activation functions and weight matrices
for each layer are determined, as well as the number of weights for the neural net decoder.
An example of error correction with uses of the BCH neural net decoder is considered. As
a special case of a neural network decoder built on the basis of a parity-check matrix, a
model for decoding Hamming codes has been proposed. This is the two-layer feedforward
neural net for with a neuron number equal to the length of the codeword and a number of
weight coeflicients equal to the square of the codeword length. The graphs of the number of
a synaptic weight of neural net decoders based on the generator and parity-check matrices,
on the number of bits and the number of corrected errors, are shown.

Keywords: error-correction codes; neural network decoders; mneural network
classification.

Introduction

Recently, artificial intelligence is increasingly associated with neural networks. Neural
networks allow solving a wide range of classical problems for which alternative approaches
do not give satisfactory results. However, the specifics of neural networks construction, the
complex selection of optimal parameters show that many classical problems with simple
decision algorithms, become cumbersome for neural network implementation. One example
of such problems is the construction of neural net decoders for error-correction codes (n, k).

The idea of using neural networks for decoding error-correction codes was offered back
in the 80’s. For example, in [1] a two-layer recurrent neural network model of the Hamming
decoder is proposed. The disadvantages of this model include the exponential growth of
neurons with an increase of k, as well as the delays associated with the features of the
recurrent layer this network. In [2|, an approach related to the use of a check matrix is
proposed for decoding Hamming codes. The first two layers of the neural network were
needed to determine the error vector, the third and fourth to restore message. Decoding
of linear block codes was also considered in [3-5|. In [3, 5] two-layer neural networks
of direct propagation with 2¥ neurons in the hidden layer are proposed. The obvious
drawback of these models is exponential growth of neurons with increasing k. In [4], a
fundamentally different approach to the construction of neural net decoders is considered.
The authors expand the feature space and the weight coefficients are calculated using
genetic algorithms. The disadvantages of this approach are determined by the shortcomings
of genetic algorithms. In [6-8] neural net decoders BCH(63,36), BCH (63,45), BCH
(127,106) are considered. In this case, for decoding was used deep neural networks.

In this paper we use an analytic approach for constructing neural net decoders of
matrix codes. In Section 1 we consider neural net decoders which are built on the base of
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the generator matrix. In Sections 2 and 3 we propose models of decoders constructed on
the base of the parity-check matrix.

1. Neural Net Decoder Built on the Basis of the Generator Matrix

If an error occurs, the valid codeword transforms to corrupt. Each word can be
represented by a point in a Hamming space. For binary words the Hamming space is
a sphere. In this case each original codeword, together with its own distorted words, can
be grouped into clusters. Since all cluster points are located on the Hemming sphere, they
belong to the same spherical segment (Fig. 1), i.e. can be separated from each other by
cutting planes. The number of such separating planes for the code (n, k) is equal to 2*.

Fig. 1. The separating planes that cut off the Hamming sphere into clusters with centers
corresponding to corrected codewords

Consider the neural network implementation of the described approach to decoding of
error-correction codes. Let G is a generator matrix, a = (ay, as, ..., ax)? is an information
word, then the corresponding codeword will be have the form: m=Ga. It is obvious that
from the set of all 2% information words A = (a;, ay, ..., ay ) we can create 2% cluster centers
M=GA (allowed codewords). The decoder model is shown in Fig.2. Quantity neurons in
the first layer is determined by the number of allowed codewords and in the second layer
by the number of information bits. This model can be implemented as a perceptron or as
a radial-basis functions network [3, 5].

In the first case, if we send to the input bipolar values z; of received code combination x,
ie & = 2x;,—1 (% € {—1,1}), then matrices W' and W? can be defined as W' = 2M —J,
W2 = AT where J is all-ones matrix. As the activation functions of the first layer neurons
one can take f1(z) = 0(z — zmax), where 0(z) is the Heaviside function with condition
0(0) = 1, zmax — max(W'X). For f2(z) it suffices to take a linear function or ReLU. The
second case was considered in detail in [5].

Note that to configure the neural network we need to calculate W'n x 2*] and
W?2[2% x k]. In this case, we need to determine N = (n + k) - 2 synaptic weight.

2. Neural Net Decoder Based on a Parity-Check Matrix

In this section, we will consider an algorithm of analytic adjustment of a 4-layer neural
net decoder for binary error-correction code (n, k), which correcting up to ¢ errors (Fig. 3).
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Fig. 2. Neural net decoder built on the basis of the generator matrix
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Fig. 3. Neural net decoder based on a parity-check matrix

Let H is a parity-check matrix of the code, then for first layer we put W' = H,
f1(z) = 2(2 mod 2) — 1. The output of the first layer will give us a binary representation
of the syndrome, which determines the error. To localize the error we use the syndrome
matrix, which we denote by W2, The output of the second layer will be the vector that
determines the position of the syndrome in matrix W2. Moreover, W2 can be obtained
using the mapping W? = 2(HW?*)T — J, where W? is a matrix consisting of all possible
error vectors that can be corrected. As activation functions for neurons of the second and
third layers we take f2(z) = 0(z —r) and f*(2) = z. In the fourth layer, the original code
sequence and the error vector are added module 2 and the parity symbols are rejected.
The activation function is f4(z) = 2 mod 2. Note that to configure this neural network,

3 3
we need to calculate W'[r x n], W? {Z C x r} , W? {n X > C’fz} u Wk x 2n]. In this
i=1 =1

cagse, we need to determine

N:(r+n)-ZCZ+n-(r+2k)

i=1
synaptic weight.

Example 1. Consider the BCH(31,21) code for information sequence
a = (1100100...05;)*. For matrix G = (I,G")T, which generated by polynomial
plx) =1+ 2%+ 2% + 25+ 2% + 2° + 2! we put in correspondence the parity-check matrix
H = (G”,1). Assume during transmission in the codeword m = (1100100...01011101015;)7
an errors occurred in the third and fourth symbols, i.e. x = (1111100...010111010135;)7.
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At the output of the first layer we have a vector-syndrome
y' = f{(W'x) = (1,1,-1,—-1,1,-1,1,1,1, 1)
At the output of the second layer we have vector
y? = fA(W2y') = (000...0014,00...000406) ",

which determines the position of the error vector in the syndrome matrix W2, We describe
the algorithm for constructing this matrix. Define W? as a matrix whose columns are all
possible errors that can be corrected:

1 .11 1 1 1

W3 = 1 1 1

...01

As it was shown earlier W? = 2 (HWS)T - J.

Since in vector W2y! the maximum element is at 91 place, which corresponds to
y? = (000...0019;00...000496)", then we need to take the 91 column from matrix W?. It
will coincide with the error vector for the received code combination:

y? = W?y? = (001100...0005,)7.

At the output of the fourth layer we get valid information message
yt=r* <W4 : < §3 >> — (1100100...0005,)" = a.

3. Neural Net Hamming Decoder on the Parity-Check
Matrix Base

Note that in special cases, the number of layers in a neural net decoder can be reduced.
As an example we consider the decoder of the Hamming codes. Let the input of a neural

Xinf

net decoder (Fig. 4) is vector x = , where Xinr and Xcheek are information and

Xcheck
parity-check vectors respectively. Let H is the parity-check matrix of the code written in

a systematic form, then for the first layer we have W' = H = (G”,I). Function activation
of neurons for this layer is given as follows:

€
') = S @z mod 2) - 1),
r
where ¢ is some positive number close to zero. The output of the first layer will give us a

binary representation of the error position in the codeword (it is a syndrome), expanded
to negative values and multiplied by e/r. Next, Xi,¢ is combined with the syndrome and
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Fig. 4. Two-layer neural net decoder of the Hamming codes, built on the basis of the
parity-check matrix

transmitted to the second layer. The matrix of the weight for the second layer is equal to
W? = (I,2G” — J). As a function of activation of neurons of the second layer, we take

9 1 ife<z<1+e,
/ (z){ 0 otherwise.

Consider the restrictions on e for correct work of the neural net. If we multiplying
matrix 2G” — J on the syndrome we will have a vector, the maximum of which is .
This corresponds to an corrupted information bit. If corrupted bit is "0" | then activation
function f2(0 + ¢) equal unit. Otherwise, if the corrupted bit equal to "1" |, then f2(1 +¢)
will give "0".

For the correct operation of the network, it is necessary that the following condition
is satisfied: 1 — e > ¢ (otherwise, correct bit "1" will be corrected to "0"). Thus ¢ must
satisfy condition ¢ < 1/2. In particular, if ¢ = 1/2, then the activation functions of neurons
of the first and second layers will take the form

1 if0,5<2<1,5,

r 0 othewise.

1 1
fHz) =~ <z mod 2 — 5) and 2(z) = {
If the half-interval in f?(z) to shift on 3 - £ to the left, then for ¢ = 1/2 we will have

1 f0,5—L<z<i1p5-—1L
2 — ) ar — 4r?
F(2) { 0 otherwise.

Note that to configure this neural network we need to calculate W[r x n] and W2[k x n|.
In this case we need to determine N = (r + k) - n = n? synaptic weight.

Example 2. Consider the Hamming (31,26) code for information sequence
a = (1100100...096)T. Generator matrix G = (I, G")T is generated by polynomial
p(r) =1+ 22 + 2° Assume during transmission in codeword m = (1100100...011003;)7
an error occurred in the third symbols, i.e. x = (1110100...011005;)”. At the output of the
first layer we have vector

yl — fl(Wlx) — 07 L- (_17 17 17 _17 _1)T

The input of second layer is vector

( ;il“f > ~(1,1,1,0,1,0,0,...,0,0.1,—0.1,0.1,0.1, =0.15,)" .
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The output of this layer has the form
y' =/ <W2 : < ;if‘f >> — (1100100...0)" = a.

Note that the weight matrices W' and W? include the unit matrices of orders r and k,
respectively. It follows that to adjust the neural network is enough to determine N = 2rk
synaptic weight.

Conclusion

The paper considers three models of neural net decoders for linear block codes.
Matrices of weight coefficients are analytically determined for each model. Note that when
choosing a model for decoding linear block codes, two factors should be considered: the
number of layers of the neural network and the number of synaptic connections. Fig. 5
shows typical graphs of number of synaptic connections for neural net decoders constructed
on the base of the generator matrix (graphs 1, 2) and on parity-check matrix base (graphs
3, 4), in dependence from the number of information bits and the number of corrected
errors. Graph 5 corresponds to the neural net decoder for the Hamming codes, built on
the parity-check matrix base.
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Fig. 5. Dependence of the number of synaptic connections on the code parameters
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HEVPOCETEBLIE JEKOJAEPHI JIMHEMHBIX BJIOUYHBLIX KOJA0B

B.H. /Jymaues', A.H. Konwaos', B.B. Bymos!
'Boporexcknit uncturyr MBI Poccuu, . Boponex, Pocentickas @eneparust

Pabora mocssimena HeipoceTeBbIM AeKOAepaM JUHEHHBIX OJI0THBIX KOI0B. PacecMoTpe-
HBI AHAJTUTUIECKHUE METOIB PACIETa CHHANTHIECKUX BECOB, HA3UPYIOMNECS HA, NCIIOIb30Ba~
HUH TIOPOXKAAF0INeH 1 TPOBEpOYHO MaTpurl. [lokazano, 4To Jj18 nocTpoeHus HelipoceTeBOTO
JEKOAepa Ha OCHOBE TIPOBEPOYHOIT MATPUIIEI JJOCTATOYHO YETPBIPEXCTOMHON HEIMPOHHOIT ce-
TH IPSMOTO pacnpocTpanenns. Onpeseersl (QYyHKITHH aKTUBAINNA U BECOBLIE MATPUITHI JIJTsT
KaXKJIOTO U3 CJIOEB, & TAKZKE KOJMIECTBO BECOBBIX KOIDPUIIMEHTOB HEHPOCETBOTO IEKO/IEPA.
PacemoTpen npuMep HCIpaBAeHns OMMUOOK MPUBEIECHHBIM IEKOIEPOM TIPH UCIIOIL30BAHNN
xoqa BUX. B katecTBe 9acTHOTO C/Iydas HEPOCETEBOTO JIEKOAEPA, TIOCTPOEHHOTO Ha OCHOBE
MMPOBEPOYHON MATPHIIBI, TPEIJIOXKEHa MOJIENh JIJI JeKOAUPOBaHUs KOJAOB X3aMMuHTa. JlaH-
HAS MOJIEJIb TTPECTABSET CODOM ABYXCIONHY O HEMPOHHYIO CETh IPIMOTO PACIPOCTPAHEHHS
€ 9UCJIOM HEMPOHOB, PABHBIM JJIMHE KOJOBOTO CJIOBA, U YHCJIOM BECOBHIX KO3 uImeHTon,
PaBHBIM KBaJIPATY JJIMHBI KOJIOBOTO c0Ba. [IpruBementr rpadukn 3aBUCUMOCTEN KOJTHIECTBA
CHHANTHUYECKAX CBA3EH HENPOCETEBBIX JEKOAECPOB, NOCTPOEHHBIX HA OCHOBE TTOPOKAAFOIIEIT
¥ IPOBEPOYHON MATPHUIL, OT YK/ HHQOPMAIMOHHBIX OUT W 9UC/Ia UCITPABISIEMBIX OMHUOOK.

Karuesve crosa: nomeroycmotivusoe xoduposanue; netipocemesvie dexodepot, Helipo-

cemesas %ﬂaccuﬁu%‘auuﬂ.
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