МОДЕЛИРОВАНИЕ РОМБОЭДРИЧЕСКОЙ МАГНИТОСТРИКЦИИ В СПЛАВАХ Fe-Ga

М.В. Матюнина¹, М.А. Загребин^{1,2}, В.В. Соколовский¹, В.Д. Бучельников¹

¹Челябинский государственный университет, г. Челябинск, Российская Федерация ²Южно-Уральский государственный университет, г. Челябинск,

Российская Федерация

В данной работе представлены результаты моделирования ромбоэдрической магнитострикции сплавов Fe–Ga в кристаллических структурах кубической симметрии, полученные при помощи теории функционала плотности. Показано, что зависимость энергии магнитокристаллической анизотропии от степени малых деформаций является убывающей функцией в диапазоне концентраций от 3,125 до 25 ат.% и меняет знак при величине деформации более 1% сплавах с содержанием Ga 15,625, 21,875 и 25 ат.%. Константа ромбоэдрической магнитострикции в диапазоне концентрации Ga 12,5 – 18,75 ат.% хорошо согласуется с экспериментальными данными.

Ключевые слова: энергия магнитокристаллической анизотропии; вычисления из первых принципов; ромбоэдрическая магнитострикция.

Введение

Многофункциональные сплавы $Fe_{100-x}Ga_x$ актуальны в технике в качестве магнитострикционных приводов, преобразователей энергии и датчиков микроэлектромеханических систем. Величина константы тетрагональной магнитострикции λ_{001} в слабых магнитных полях достигает двух максимумов в диапазоне концентраций Ga 0 < x < 35 ат. % [1–3]. Согласно экспериментальным данным наибольшие значения λ_{001} обнаружены для x = 19 ат.% ($\approx 180 \times 10^{-6}$) и x = 27 ат.% ($\approx 233 \times 10^{-6}$) и связаны с наличием в сплавах однородных структур A2 и D0₃, в то время как уменьшение λ_{001} в области около 25 ат.% Ga связано с сосуществованием нескольких фаз [3]. В то же время, величина константы ромбоэдрической магнитострикции λ_{111} составляет порядка $\approx 8,5 \times 10^{-6}$ и $\approx 40,7 \times 10^{-6}$ в области пиков λ_{001} [1,2] и является отрицательной в области x < 19 ат. % [2]. Вопросам экспериментального и теоретического изучения ромбоэдрической магнитострикции в сплавах Fe-Ga посвящено значительно меньшее количество работ, в отличие от тетрагональной магнитострикции λ_{001} . Ресторфф (Restorff) и др. [2] провели исследование влияния изменения формы образца в магнитном поле на величину тетрагональной λ_{001} и ромбоэдрической λ_{111} магнитострикций, а также на константы магнитоупругого взаимодействия b_1 и b_2 в сплавах Fe-X (X = Al, Ga, Ge). Искажения формы образца снижают энергию размагничивания и оказываются существенными для низких и умеренных значений магнитострикции, а также для сплавов с высокой магнитострикцией и низкими модулями упругости. Авторы также пришли к выводу, что магнитострикция и магнитоупругое взаимодействие в этих сплавах обусловлены фазовым переходом «беспорядок-порядок». С теоретической точки зрения влияние ближайшего окружения атомов Ga в структуре D0₃ на величину ромбоэдрической магнитострикции представлено в работе Жанга (Zhang) с соавторами [4]. Показано, что важную роль в определении знака λ_{111} играет симметрия и наличие несвязанных состояний вблизи уровня Ферми.

В данной работе проведено исследование зависимости величины ромбоэдрической магнитострикции сплавов $Fe_{100-x}Ga_x$ ($0 \le x \le 28, 125 \text{ ar.}\%$) в структурных фазах A2, D0₃ и L1₂ в зависимости от концентрации атомов Ga методом теории функционала плотности.

1. Теоретическая модель

Явление магнитострикции, связанное с изменением внешней формы магнетика при его намагничивании, оказывается существенным при рассмотрении доменной структуры и механизма намагничивания [5]. Относительная деформация образца $\delta l/l_0$ (l_0 длина образца в размагниченном состоянии) обычно очень мала в области малых магнитных полей (порядка $10^{-5} \div 10^{-6}$) и возрастает с ростом напряженности магнитного поля, достигая состояния насыщения при некотором значении поля. В состоянии насыщения величину $\delta l/l_0$ обычно обозначают λ , и относительное изменение длины при переходе из размагниченного состояния в состояние насыщения составляет [5]:

$$\lambda = \frac{\delta l}{l_0}|_{\text{hacbuyehur}} - \frac{\delta l}{l_0}|_{\text{pasmarhurubahur}} . \tag{1}$$

Как и в случае магнитной анизотропии, представляющей собой явление преимущественной ориентации спонтанной намагниченности магнетика вдоль характерных для него кристаллографических осей, анизотропная магнитострикция определяется энергией спин-орбитального взаимодействия. В отсутствии магнитострикционной деформации кристалла расстояние между спинами фиксировано, и изменения внутренней энергии кристалла не происходит. При деформации образца изменяются длина и направление оси каждой спиновой пары в зависимости от направления вектора спонтанной намагниченности. Для кристаллов кубической сингонии магнитострикция может быть определена через относительное растяжение λ_{111} (постоянная ромбоэдрической магнитострикции) и λ_{001} (постоянная тетрагональной магнитострикции) вдоль направлений [111] и [001] соответственно, следующим образом [5]:

$$\frac{\delta l}{l_0} = \frac{3}{2}\lambda_{001} \left(\sum_{i=1}^3 \alpha_i^2 \beta_i^2 - \frac{1}{3} \right) + 3\lambda_{111} \left(\alpha_1 \alpha_2 \beta_1 \beta_2 + \alpha_2 \alpha_3 \beta_2 \beta_3 + \alpha_1 \alpha_3 \beta_1 \beta_3 \right),$$
(2)

где α_i и β_i – направляющие косинусы намагниченности (**M**) и напряжения (**S**) относительно одной и той же кристаллографической оси. Направляющие косинусы намагниченности определяются как $\alpha_1 = \sin \theta_M \cos \varphi_M$, $\alpha_2 = \sin \theta_M \sin \varphi_M$, $\alpha_3 = \cos \theta_M$, и напряжения $\beta_1 = \sin \theta_S \cos \varphi_S$, $\beta_2 = \sin \theta_S \sin \varphi_S$, $\beta_3 = \cos \theta_S$.

Оценить ромбоэдрическую магнитострикцию λ_{111} можно в соответствии с выражением (1) путем определения $\delta l/l_0$ при повороте вектора намагниченности от оси [111] к оси [11 $\overline{2}$] при напряжении, приложенном вдоль направления [111]. На рис. 1 показаны углы φ и θ , определяющие направления намагниченности и напряжения. Ромбоэдрическая магнитострикция выражается следующим соотношением:

$$\lambda_{111} = -\frac{2}{3} \left(\frac{\delta l}{l_0} \Big|_{11\bar{2}} - \frac{\delta l}{l_0} \Big|_{111} \right).$$
(3)

159

Вестник ЮУрГУ. Серия «Математическое моделирование

и программирование» (Вестник ЮУрГУ ММП). 2019. Т. 12, № 2. С. 158–165

Рис. 1. Углы φ и θ , определяющие направление вектора намагниченности вдоль осей [111] (φ, θ_j) и $[11\overline{2}]$ (φ, θ_i) . Напряжение параллельно оси [111]

Величины
$$\frac{\delta l}{l_0}|_{111}$$
 и $\frac{\delta l}{l_0}|_{11\bar{2}}$ определяются в соответствии с соотношением (2):
 $\frac{\delta l}{l_0}|_{111} = \lambda_{111} \quad \left(\beta_1 = \beta_2 = \beta_3 = 1/\sqrt{3}, \ \alpha_1 = \alpha_2 = \alpha_3 = 1/\sqrt{3}\right),$
(4)

$$\frac{\delta l}{l_0}|_{11\bar{2}} = -\frac{1}{2}\lambda_{111} \quad \left(\beta_1 = \beta_2 = \beta_3 = 1/\sqrt{3}, \ \alpha_1 = \alpha_2 = 1/\sqrt{6}, \ \alpha_3 = -2/\sqrt{6}\right). \tag{5}$$

Энергия магнитокристаллической анизотропии определяется как разность энергий с ориентацией спинов вдоль направлений [uvw] и $E_{\text{мин}}$ в соответствии с уравнением

$$E_{MKA} = E_{[uvw]} - E_{\text{мин}},\tag{6}$$

где $E_{\text{мин}}$ – энергия системы с наиболее стабильной ориентацией спинов. Для определения E_{MKA} были вычислены энергии системы в направлениях [111] и [11 $\overline{2}$] в зависимости от малых искажений ε при постоянном объеме. Постоянную ромбоэдрической магнитострикции λ_{111} в рамках теории функционала плотности непосредственно можно рассчитать с помощью следующего выражения [4]:

$$\lambda_{111} = \frac{2dE_{MKA}/d\varepsilon}{3d^2 E_{novn.}/d^2\varepsilon} = -\frac{b_2}{3C_{44}},\tag{7}$$

$$-b_2 = \frac{2}{3V} \frac{dE_{MKA}}{d\varepsilon}.$$
(8)

Энергия кристаллической решетки при постоянном объеме может быть разложена в ряд по степеням малых деформаций ε

$$E_{nonm.}(V,\varepsilon) = E_{nonm.}(V_0,0) + V_0 \sum_{i=1}^6 \sigma_i \varepsilon_i + \frac{V_0}{2} \sum_{i,j=1}^6 c_{ij} \varepsilon_i \varepsilon_j + o\left(\varepsilon^3\right),\tag{9}$$

где c_{ij} – упругие константы, $E_{nonh.}(V_0, 0)$ – полная энергия недеформированной решетки объема V_0 , ε_i и σ_i – тензоры деформации и напряжения соответственно.

Для расчета объемного модуля $B = (C_{11} + 2C_{12})/3$ и модулей $C' = (C_{11} - C_{12})/2$ и C_{44} были использованы изотропный, орторомбический и моноклинный тензоры деформации $D_i(\varepsilon)$, представленные ниже, с шагом деформации 1% в диапазоне $-3\% \le \delta \le 3\%$.

$$D_{1}(\varepsilon) = \begin{pmatrix} \delta & 0 & 0 \\ 0 & \delta & 0 \\ 0 & 0 & \delta \end{pmatrix}, D_{2}(\varepsilon) = \begin{pmatrix} \delta & 0 & 0 \\ 0 & -\delta & 0 \\ 0 & 0 & \frac{\delta^{2}}{1 - \delta^{2}} \end{pmatrix}, D_{3}(\varepsilon) = \begin{pmatrix} \frac{\delta^{2}}{1 - \delta^{2}} & \delta & 0 \\ \frac{\delta}{0} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Упругие константы были определены путем аппроксимации изменения полной энергии ΔE полиномами второго и четвертого порядков в соответствии со следующими уравнениями:

$$\Delta E = \frac{9V_0B}{2}\delta^2 + \mathcal{O}\left(\delta^4\right),\tag{10}$$

$$\Delta E = 2V_0 C' \delta^2 + \mathcal{O}\left(\delta^4\right),\tag{11}$$

$$\Delta E = 2V_0 C_{44} \delta^2 + \mathcal{O}\left(\delta^4\right). \tag{12}$$

Расчеты всех необходимых характеристик были выполнены в рамках теории функционала плотности, реализованной в программном пакете VASP [6, 7]. Обменно-корреляционное взаимодействие учитывалось в приближении обобщенного градиента в формулировке Пердью, Бурка и Эрнзерхофа (*Perdew, Burke and Ernzerhof*) [8]. Электрон-ионное взаимодействие описывалось методом проекционноприсоединенных волн (*projector-augmented wave, PAW*) [7] со следующей валентной конфигурацией атомов: $Fe(3p^63d^74s^1)$ и $Ga(3d^{10}4s^24p^1)$. Величина отсечения энергии плоских волн составляла 400 эВ. Для интегрирования по зоне Бриллюэна использовалась сетка Монхорст – Пака [9] размером $8 \times 8 \times 8$ *k*-точек.

В недавней работе [10] было проведено исследование из первых принципов свойств пяти структурных состояний A2, D0₃, B2, L1₂ и D0₁₉ сплавов Fe_{100-x}Ga_x (x = 0 - 31, 25 ar.%). Полученная зависимость разности энергий кристаллических структур от концентрации атомов Ga показала, что наиболее устойчивыми являются фазы A2, D0₃ и L1₂. Фаза A2 энергетически выгодна в области $0 \le x < 6, 25 \text{ ar.\%}$ в то время как состояние D0₃ устойчиво в диапазоне $6, 25 \le x < 21, 875 \text{ ar.\%}$ и фаза L1₂ обладает наименьшей энергией в области концентрации атомов Ga 21, $875 \le x < 31, 25 \text{ ar.\%}$.

В данной работе рассмотрены следующие устойчивые структурные состояния: А2 (пространственная группа симметрии $Im\bar{3}m \ N^2 229$, со структурой типа α -Fe) со случайно распределенными атомами Fe и Ga; D0₃ (пространственная группа симметрии $Fm\bar{3}m \ N^2 225$, со структурой типа BiF₃) с частично или полностью упорядоченными атомами Fe и Ga; L1₂ (пространственная группа симметрии $Pm\bar{3}m \ N^2 221$, со структурой типа Cu₃Au) с частично или полностью упорядоченными атомами Fe и Ga.

Моделирование было выполнено для 32-х атомных суперъячеек. Различные концентрационные конфигурации задавались путем замещения атомов одного сорта другим, при этом замена одного атома Fe/Ga соответствует изменению концентрации 3, 125 ат.%. Расчетные суперъячейки показаны на рис. 2.

Рис. 2. Расчетные 32-атомные суперячейки $Fe_{24}Ga_8$ (соответствует сплаву $Fe_{75}Ga_{25}$) с кристаллическими структурами: а) A2, б) D0₃ и в) L1₂ и соответствующие им элементарные ячейки. Суперячейки получены транслированием элементарных ячеек вдоль кристаллографических осей в соответствии с формулами: $4 \times 2 \times 2$ для фазы A2 и $2 \times 2 \times 2$ для фаз D0₃ и L1₂

2. Результаты моделирования

На рис. 3 представлены результаты исследования энергии магнитокристаллической анизотропии E_{MKA} кристаллических структур A2, D0₃ и L1₂ в зависимости от степени малых деформаций ε в сплавах Fe_{100-x}Ga_x.

Видно, что в фазе A2 для чистого железа (α -Fe, объемно-центрированная кубическая решетка) наблюдается увеличение E_{MKA} с увеличением степени искажения, и происходит смена знака с отрицательного на положительный. В дальнейшем, с увеличением концентрации атомов Ga в кристаллических структурах вплоть до x = 28, 125 ат.% энергия магнитокристаллической анизотропии характеризуется отрицательным наклоном. В диапазоне концентраций $3, 125 \leq x \leq 12, 5$ ат.% и при x = 18, 75 ат.% E_{MKA} для структур A2 и D0₃ является положительной. В области значений $21, 875 \leq x < 28, 125$ ат.% и при x = 15, 625 ат.% E_{MKA} меняет знак с положительного на отрицательный при $\varepsilon \geq 1\%$.

На рис. 4 а) приведены результаты расчетов ромбоэдрической магнитострикции λ_{111} в зависимости от концентрации атомов Ga. В диапазоне $0 < x \leq 12, 5$ ат.% λ_{111} уменьшается с увеличением содержания атомов Ga, достигая минимума при x = 12, 5 ат.%. При содержании Ga более 12, 5 ат.% в сплавах $Fe_{100-x}Ga_x$ наблюдается увеличение ромбоэдрической магнитострикции в кристаллической структуре D0₃. Для структуры L1₂ магнитострикция λ_{111} также увеличивается. В сплаве $Fe_{71,875}Ga_{28,125}$ λ_{111} принимает положительное значение. Для сравнения на рис. 4 а) приведены экспериментальные значения λ_{111} , взятые из работы [2]. Можно отметить хорошее согласие полученных теоретических значений для фазы D0₃ с экспериментальными данными.

Полученные значения модуля упругости C_{44} , представленные на рисунке 4 б) хорошо согласуются с экспериментом при концентрации атомов Ga $x \ge 12, 5$ ат.%. Имеющиеся различия могут быть объяснены тем фактом, что вычисления выполнялись при T = 0 K, в то время как экспериментальные значения получены при комнатной

Рис. 3. Зависимость энергии магнитокристаллической анизотропии E_{MKA} от степени малых деформаций ε в сплавах $\operatorname{Fe}_{100-x}\operatorname{Ga}_x$ для кристаллических структур: а) A2, б) D0₃ и в) L1₂

температуре. Кроме того, экспериментальные образцы могут быть многофазными, в то время как расчеты выполнены для случая однофазных монокристаллов.

Заключение

В настоящей работе проведено моделирование из первых принципов ромбоэдрической магнитострикции в сплавах $Fe_{100-x}Ga_x$ ($0 \le x \le 28, 125$) для кристаллических структур A2, D0₃ и L1₂. Показано, что зависимость $E_{MKA}(\varepsilon)$ имеет отрицательный наклон в диапазоне концентраций $3, 125 \le x \le 25$ ат.% и достигает максимального значения в фазе D0₃ при x = 12, 5 ат.% и $\varepsilon = -2\%$. Рассчитанные значения модуля упругости имеют хорошее согласие с экспериментальными данными для сплавов с содержанием Ga $x \ge 12, 5$ ат.%. Постоянная ромбоэдрической магнитострикции λ_{111} в диапазоне $3, 125 \le x \le 25$ ат.% имеет отрицательные значения. При концентрации атомов Ga x = 12, 5 ат.% ромбоэдрическая магнитострикция достигает максимально-

Рис. 4. Зависимость а) ромбоэдрической магнитострикции и б) модуля упругости сплавов $Fe_{100-x}Ga_x$ для кристаллических структур A2, D0₃ и L1₂ от концентрации атомов Ga

го (по модулю) значения. В фазе L1₂ при x = 28,125 ат. $\% \lambda_{111}$ становится положительной. В фазе D0₃, полученные значения магнитострикции хорошо согласуются с экспериментальными данными

Работа проводилась при финансовой поддержске Российского научного фонда, гранты № 18-12-00283 (расчеты модулей упругости), № 17-72-20022 (расчеты ромбоэдрической магнитострикции).

Литература / References

- Clark A.E., Hathaway K.B., Wun-Fogle M. Extraordinary Magnetoelasticity and Lattice Softening in Bcc Fe–Ga Alloys. *Journal of Applied Physics*, 2003, vol. 93, pp. 8621–8623. DOI: 10.1063/1.1540130
- Restorff J.B., Wun-Fogle M., Hathaway K.B. et al. Tetragonal Magnetostriction and Magnetoelastic Coupling in Fe-Al, Fe–Ga, Fe-Ge, Fe-Si, Fe–Ga-Al, and Fe–Ga-Ge Alloys. *Journal of Applied Physics*, 2012, vol. 111, p. 023905. DOI: 10.1063/1.3674318
- Qingsong Xing, Yingzhou Du, McQueeney R.J., Lograsso T.A. Structural Investigations of Fe–Ga Alloys: Phase Relations and Magnetostrictive Behavior. Acta Materialia, 2008, vol. 56, pp. 4536–4546. DOI: 10.1016/j.actamat.2008.05.011
- Yanning Zhang, Hui Wang, Ruqian Wu. First Principles Determination of the Rhombohedral Magnetostriction of Fe_{100-x}Al_x and Fe_{100-x}Ga_x Alloys. *Physical Review B*, 2012, vol. 86, p. 224410. DOI: 10.1103/PhysRevB.86.224410
- 5. Chikazumi S. Physics of Ferromagnetism. New York, Oxford University Press, 1997.
- 6. Kresse G., Furthmüller J. Efficient Iterative Schemes for Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Physical Review*, 1996, vol. 54, pp. 11169–11186. DOI: 10.1103/PhysRevB.54.11169
- 7. Kresse G., Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Physical Review*, 1999, vol. 59, pp. 1758–1775. DOI: 10.1103/PhysRevB.59.1758

- 8. Perdew J.P., Burke K., Enzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996, vol. 77, pp. 3865–3868. DOI: 10.1103/PhysRevLett.77.3865
- 9. Monkhorst H.J., Pack J.D. Special Points for Brillouin-Zone Integrations. *Physical Review*, 1976, vol. 13, pp. 5188–5192. DOI: 10.1103/PhysRevB.13.5188
- 10. Matyunina M.V., Zagrebin M.A., Sokolovskiv V.V., Pavlukhina O.O., Buchelnikov V.D., Balagurov A.M., Golovin I.S. Phase Diagram of Magnetostrictive Fe-Ga Alloys: Insights from Theory and Experiment. Phase Transitions, 2019, vol. 92, pp. 101-116. DOI: 10.1080/01411594.2018.1556268

Мария Викторовна Матюнина, аспирант, кафедра физики конденсированного состояния, Челябинский государственный университет (г. Челябинск, Российская Федерация), matunins.fam@mail.ru.

Михаил Александрович Загребин, кандидат физико-математических наук, доцент, кафедра радиофизики и электроники, Челябинский государственный университет (г. Челябинск, Российская Федерация); кафедра уравнений математической физики, Южно-Уральский государственный университет (г. Челябинск, Российская Федерация), miczag@mail.ru.

Владимир Владимирович Соколовский, доктор физико-математических наук, доцент, кафедра физики конденсированного состояния, Челябинский государственный университет (г. Челябинск, Российская Федерация), vsokolovsky84@mail.ru.

Василий Дмитриевич Бучельников, доктор физико-математических наук, профессор, заведующий кафедрой физики конденсированного состояния, Челябинский государственный университет (г. Челябинск, Российская Федерация), buche@csu.ru.

Поступила в редакцию 28 марта 2019 г.

MSC 65Z05

DOI: 10.14529/mmp190214 MODELLING OF RHOMBOHEDRAL MAGNETOSTRICTION IN Fe–Ga ALLOYS

M.V. Matyunina¹, M.A. Zagrebin^{1,2}, V.V. Sokolovskiy¹, V.D. Buchelnikov¹ ¹Chelyabinsk State University, Chelyabinsk, Russian Federation ²South Ural State University, Chelvabinsk, Russian Federation E-mails: matunins.fam@mail.ru, miczag@mail.ru, vsokolovsky84@mail.ru, buche@csu.ru

> The paper presents the results of modelling of rhombohedral magnetostriction for Fe-Ga alloys in the cubic crystal structures. The results are obtained with the help of the theory of density functional. We show that the energy of magnetic crystalline anisotropy is a decreasing function of the small deformation in the concentration range from 3,125 to 25 at.%. Magnetic crystalline anisotropy changes the sign, if the deformation is more than 1%for alloys with Ga 15,625, 21,875 and 25 at.%. Rhombohedral magnetostriction constant agrees well with the experiment results for alloys with Ga concentration at 12.5 - 18.75at.%.

> Keywords: magnetocrystalline anisotropy energy; ab intio calculations; rhobohedral magnetostriction.

> > Received March 28, 2019