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In previous works of the article’s authors on development of the Galerkin
method, linear formulas for calculating the approximate eigenvalues of discrete
lower semi-bounded operators have been obtained. The formulas allow calculat-
ing the eigenvalues of the specified operators of any number, regardless of
whether the eigenvalues of the previous numbers are known or not. At that, it is
possible to calculate the eigenvalues with large numbers when application of the
Galerkin method is becoming difficult. It is shown that eigenvalues of small num-
bers of various boundary-value problems, generated by discrete lower semi-
bounded operators and calculated by linear formulas and by the Galerkin
method, are in a good conformity.

In this paper we use linear formulas to calculate approximate eigenvalues
with large numbers of discrete lower semi-bounded operators. Results of calcula-
tion of eigenvalues by linear formulas and by known asymptotic formulas for two
spectral problems are given. Comparison of the results of calculations of the ap-
proximate eigenvalues shows that they almost coincide for sufficiently large
numbers. This proves the fact that linear formulas can be used for the considered
spectral problems and sufficiently large numbers of eigenvalues.

Keywords: spectral problem; discrete operators; semi-bounded operators; ei-
genvalues and eigenfunctions of an operator; Galerkin method.

Introduction

It is known that the spectrum of a discrete operator consists of isolated points that have no limit
points other than infinity. Moreover, each eigenvalue of a discrete operator has finite multiplicity.

Let L be a discrete semi-bounded from below operator, defined in the separable Hilbert space H. Its
eigenvalues u are determined by finding non-trivial solutions of the equation:

Lu= pu, (D
which satisfies the given homogeneous boundary conditions. Enumerate them in order of increasing val-
ues of eigenvalues, taking into account the multiplicity {x, }:: L

To find the eigenvalues of the operator I. we use the Galerkin method. Consider a sequence

{H, }:: | of finite dimensional spaces H, < H , which is complete in H. Suppose, that the orthonormal

basis of space H, is known and consists of functions {¢, }ZZI . Wherein the functions ¢, must satisfy

all boundary conditions of the problem. Following the Galerkin method, we will find the approximate
solution of the spectral problem (1) in the form:

U, = D a, () g, 2)
k=1
The following theorems were proved in [1].
Theorem 1. Let L. be a discrete semi-bounded from below operator acting in a separable Hilbert
space H. If the system of coordinate functions {qbk }Zzl is a basis in the space H, then the Galerkin

method applied to the problem of finding the eigenvalues of the spectral problem (1), constructed on this
system of functions, converges.
Theorem 2. Let L. be a discrete semi-bounded from below operator acting in a separable Hilbert

space H. If the system of coordinate functions {qbk }2:1 is an orthonormal basis in the space H, then

i, () =(1g,.8,)+ 6, (3)
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n—1
where 8, = Z[[tk (n—1)— i, (n)} iy (n) is the Galerkin approximation of order n to the correspond-
k=1

ing eigenvalues p; of the operator L.

Formulas (3) allow, as shown in [1], to calculate the approximate eigenvalues of discrete semi-
bounded operators with high computational efficiency. Unlike classical methods, they drastically reduce
the amount of computation, solve the problem of finding the eigenvalues of any matrices of high order.
Also formulas (3) allows to find eigenvalues regardless of whether know eigenvalues with lower num-
bers or not and solve the problem of calculating all necessary points of the spectrum of discrete semi-
bounded operators.

Numerous eigenvalue calculations f, of boundary problems generated by discrete semi-bounded

from below operators for n <50 calculated by formulas (3) and the Galerkin method are in good agree-
ment [1].

In this work, for further verification of the developed methodology for calculating the eigenvalues
of discrete semi-bounded operators using formulas (3), we compare the results of their calculation using
these formulas with the calculations using known asymptotic formulas for the following spectral prob-
lems.

1. Asymptotic formulas for the eigenvalues of the spectral problems under consideration
Consider the classical spectral problem of the form:

—V O+ g0y =uy(x), =A% or u=S% O<x<z; @)
with boundary conditions

y0 =0, y(x)=0, (5
or
Y0)=0. y(m)=hy(m)=0 (6)
with the requirement that the potential g(x), satisfying the condition:
VA
Ix‘q(x)‘ dx < oo,

0
In the thesis of Z.M. Gasimov [2] it was shown, that for eigenvalues u, of spectral problems (4),
(5) and (4), (6) the following asymptotic formulas:

Uy =A%, A, =n+ %Iq(;)smz (nt)dt + O, 7)
0

h 1

Vi L, ) N
n(n—o’5)+”(n_0’5)fq(t)sm [(n=0.5)]dt + OF) 8)

0

1, =Sp. S,=n-0,5-

are true respectively. Here:
2/n

|
fp=—+%,, 1, = I

1 Vs
2= | tlgwldr+= | |qw|ar.
n

0 1/2n
To find the approximate eigenvalues of the spectral problem (4), (5) we construct a system of coor-
dinate functions, each function of which is an eigenfunction of the spectral problem

—¢ ()= fp(x), 0<x<m,
#(0)=0, ¢(7)=0.

It is not difficult to show, that the spectral problem (9) has a set of eigenvalues {nz}w_ , which cor-

&)

responds to an orthogonal system of eigenfunctions {Cn sin(nx)}:):1 . Constants C, are found from the

normalization conditions.
To find the approximate eigenvalues of the spectral problem (4), (6) we construct a system of coor-
dinate functions, each function of which is an eigenfunction of the spectral problem:
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—¢' (X)=p(x), 0<x<,
#¢(0)=0, ¢ (7)-hy(r)=0.

The set of eigenvalues {y, } , of the spectral problem (10) has no finite limit points. All the eigen-

oo
n=

(10)

values are real, non-negative, simple. They are the roots of the transcendental equation
\/}_/cos(ﬂ'\/}_/)—hsin(ﬂ'\/}_/):o, 1n

and the corresponding system of eigenfunctions is orthogonal and have the form {Cn sin(4/7, x)}
n=
Constants C, are found from the normalization conditions.
In case you need to find the eigenvalue y, with a sufficiently large number it is difficult to use the
transcendental equation (11), because it is necessary to consistently find all the values y, with smaller

numbers. This leads to a sharp increase in computational calculations. Therefore, in such cases it is nec-
essary to use asymptotic formulas, which can be easily obtained from formulas (&), assuming that

q)=0:

y, =52, Sn:n—o,s—L+o(fn2), 2 =, (12)
z(n—-0,5) n

2. Numerical experiments
Denote by ji the approximate eigenvalues of spectral problems (4), (5) and (4), (6), found by the

Galerkin method, by Z the eigenvalues found by formulas (3), by z the eigenvalues found by asymp-
totic formulas (7) or (8). In all the above calculations it was assumed that §, =0.
In tables 1 and 2 the eigenvalues of problem (4), (5), found by formulas (3), and asymptotic formu-

las (7) with potential g(x)= x> =5x+13—sin(6x) +2¢" are given.

Table 1
12 166,712 166.503 167.382 6.705-107" 8.792:107
13 191,685 191,507 192,257 5.719-107" 7.494-107"
14 218,663 218,511 219,157 4935107 6463107
15 247,646 247513 248,076 4302107 5.632:107"
16 278.632 278,515 279,010 3,784-107" 4,951-107"
17 311,620 311,517 311, 956 3,354:107" 4386107
18 346,611 346,519 346,910 2.993-107" 3,913:10"
19 383,602 383,520 383,871 2,687-107" 3,512:107
20 422595 422521 422838 2.426:107 3,170-107"
43 1871,545 1871,529 1871,598 5.261-107 6.863:10~
44 1958.,544 1958.,529 1958.,595 5.025:107 6.554:10~
45 2047,544 2047.529 2047.592 4,804:10~ 6.266:107
46 2138,543 2138,529 2138,589 4,597-107 5.997-107
47 2231,543 2231,529 2231,587 4.,404107 5744107
48 2326,542 2326.529 2326,584 4222:107 5,508:10~
49 2423,542 2423,529 2423582 4,052:10~ 528510~
50 2522541 2522.529 2522.580 3,892:10~ 5,076:10~
51 2623,541 2623.,530 2623,578 3,740-107 4,879-107
63 3991,538 3991,530 3991,562 2,448107 3.197-10~
64 4118,537 4118,530 4118,561 2.366:107 3,098:10~
65 4247537 4247530 4247 560 2.294-107 3,004-107
66 4378,537 4378.,530 4378,559 2.208107 2.913-107
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End of the Table 1

n &, &, B, |, ~ | |2 — 1]
67 4511,538 4511,530 4511,558 2,045-10‘2 2,827-10‘2
68 4646,539 4646,530 4646,558 1,849: 107 2,744-10‘2
69 4783,543 4783,530 4783.557 1,348: 107 2,665-10‘2
70 4922.577 4922530 4922 .556 2,053 107 2,590-10‘2
71 5063,898 5063,530 5063.555 3.426:107! 2.517-107

Table 2
n £, i, |ty = o
1000 1000022.,531 1000022.,531 1,269: 107
1001 1002023,531 1002023,531 1,267 107
1002 1004026,531 1004026,531 1,264 0™
1003 1006031,531 1006031,531 1,262 10~
1004 1008038.,531 1008038.,531 1,259-107
10000 100000022,531 100000022,531 1,269: 10°°
10001 100020023,531 100020023,531 1,267 10°°
10002 100040026,531 100040026,531 1,264 10°°
10003 100060031,531 100060031,531 1,268:10°
10004 100080038,531 100080038,531 1,268: 10°°
100000 10000000022,531 10000000022531 1,269: 10°
100001 10000200023,531 10000200023,531 1,269: 10°°
100002 10000400026,531 10000400026,531 1,269: 10°
100003 10000600031,531 10000600031,531 1,269: 10°
100004 10000800038,531 10000800038,531 1,269: 10°

Numerical calculations showed that the results of calculations of eigenvalues in three ways are in
good agreement. As the number of eigenvalues increases, the difference between them decreases.

The results of calculations for sufficiently large mumbers of the eigenvalues of the spectral problem
(4), (5) are given in the table 2. The calculation of eigenvalues with such numbers by the Galerkin
method causes difficulties due to the large dimensions of the matrices with which you have to work.
Therefore, a comparison is made between the approximate eigenvalues found by formulas (3) and the

asymptotic formulas (8). For n > 100 000 the values £, and p, are almost the same.

In Tables 3 and 4 the approximate eigenvalues of the spectral problem (4), (6) calculated by formu-

las (3) and asymptotic formulas (8) with 2= 0,5 and ¢(x) = x> —4x+5-cos(3x)+¢" are given.

Table 3
8 78,633 78,572 78,742 1,097-107 1,740-107"
9 96.619 96,572 96,708 8.864:107 1,362:107
10 116,610 116,572 116,683 731410 1,114-107
11 138,603 138,572 138,665 6.137-107 9,280-10~
12 162,598 162,572 162,650 522110~ 7.849-10~
36 1338.574 1338.571 1338.581 6.287-10 9,177-10°
37 1412,574 1412,571 1412,580 5.957-10 8.694-10~
38 1488.574 1488.571 1488.580 5,653-10 8,24810~
39 1566.574 1566,571 1566.579 5,371-10° 7.836:10~
40 1646,574 1646,571 1646.579 5,110-10 7.454-10
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End of the Table 3
n i, i, i, |, — 1, |2 — 12,
66 4428.572 4428571 4428574 1,771-10” 276410
67 4562573 4562571 4562574 1,561-10° 2,683-10"
68 4698573 4698.571 4698574 1,104:107 2,605-10°°
69 4836,577 4836,571 4836,574 3,285-10° 2,530-10°°
70 4976,588 4976,571 4976.574 1,422-10 2.459-107
Table 4
1000 99906,571 999006571 1,221-10°
1001 1001006.571 1001006,571 1,219-10°
1002 1003008.571 1003008.571 1,216:10°
1003 1005012.571 1005012,571 1,214-10
1004 1007018.571 1007018.571 1211-10°
10000 99990006,57 1 99990006,57 1 1,220-10°
10001 100010006,571 100010006,571 1,220-10°
10002 100030008,571 100030008,571 1,219-10°
10003 100050012,571 100050012,571 1,219-10°°
10004 100070018,571 100070018,571 1,219-10°
100000 9999900006,571 9999900006571 1,220-107
100001 10000100006,571 10000100006,571 1,220:107
100002 10000300008,571 10000300008.,571 1,220:107
100003 10000500012,571 10000500012,571 1,220-10”
100004 10000700018,571 10000700018,571 1,220:10™

The results of calculations of the approximate eigenvalues of the spectral problem (4), (6), given in
Tables 3 and 4 are in good agreement.

Conclusion

Comparison of the results of calculations of the approximate eigenvalues of the spectral problems
(4), (5) and (4), (6), carried out according to formulas (3) and asymptotic formulas (7) and (8), show that
for sufficiently large numbers the results are almost the same.

In previous papers in the development of the Galerkin method linear formulas for calculating the
approximate eigenvalues of discrete semibounded from below operators were obtained by the authors of
the article. Formulas allow you to calculate the eigenvalues of the specified operators with any of their
numbers, regardless of whether the eigenvalues with the previous numbers are known or not. In this
case, it is possible to calculate the eigenvalues with large numbers, when the application of the Galerkin
method becomes difficult. To test the new method for calculating the eigenvalues of discrete semi-
bounded operators, computational experiments were conducted, which showed that the eigenvalues of
small numbers of various boundary-value problems calculated by linear formulas and the Galerkin
method are in good agreement. For further verification of the obtained linear formulas, it became neces-
sary to find out how they behave when calculating eigenvalues with large numbers when asymptotic
formulas begin to work. In this paper we use linear formulas to calculate approximate eigenvalues with
large numbers of discrete semi-bounded from below operators. The results of calculating the eigenvalues
by linear formulas and by known asymptotic formulas for two spectral problems are given. Comparison
of the results of the calculations of the approximate eigenvalues show that for sufficiently large numbers
they almost coincide. This confirms the fact that linear formulas can be used for the considered spectral
problems and sufficiently large numbers of eigenvalues.

In the spectral problems considered, linear formulas give the same result as asymptotic formulas.
This confirms the possibility of applying linear formulas to the approximate calculation of any eigen-
value of a discrete semi-bounded operator. By virtue of the linearity of formulas, finding eigenvalues
becomes computationally efficient compared to any classical method.
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B mpeapiayimpx padotax aBTOpOB CTaThH B Pa3BUTHH MeTona [ anmepkuHa MOMyYCHBI THHCHHBIC
(OpMYyIBI 11 BEIYHCICHHH NPUOIMKCHHBIX COOCTBCHHBIX 3HAYCHUH AMCKPETHHIX MOTYOTPAHHUCHHBIX
CHH3Y omepatopoB. DopMynbl MO3BOSMIOT BEIMUCIATh COOCTBCHHBIC 3HAYUCHUS YKAa3aHHBIX ONEPAaTOPOB
1r000r0 HOMEpa HE3aBUCHMO OT TOTO, U3BECTHBI JTH COOCTBCHHBIC 3HAUCHHS C MPEALICCTBYIOMIUMH HO-
Mepamu Wi HeT. [Ipyu 3TOM MOJKHO BBIYMCIATE COOCTBCHHEIC 3HAYCHHUS U ¢ OOJIBIINMH HOMEPAMH, KO-
raa npuMeHeHne Merona ['anepkuHa craHOBUTCA 3aTpyAHHUTEIbHBIM. [lokazaHo, 4To COGCTBCHHBIC 3HA-
YeHHST HEOOIBIINX HOMEPOB PAa3iMHYHBIX KPACBBIX 33434, MOPOXKICHHBIX AUCKPETHBIMH NOTYOTPAaHU-
YCHHBIMH CHU3Y OIICPATOPAMH, BBIYUCICHHBIC MO JUHEHHBIM (GopMynaM U MeToaoM [anepkuna, xopo-
IO COTIacyIOTCA.

B paGote npuMeHSHBI THHCHHBIC (OPMYIIBI AJTs1 BRIYUCICHHUS NPUOIMKCHHBIX COOCTBCHHBIX 3HAYC-
HUH ¢ OONBIINMH HOMEPaMH JUCKPETHBIX MOIYOTPAHHYCHHBIX CHU3Y oneparopoB. [IpuBeacHs! pe3yib-
TaTHl BEIYUCICHUN COOCTBCHHBIX 3HAYCHUM MO TUHCHHBIM (OPMyTaM U MO H3BECTHBIM ACHMIITOTHYC-
ckuM GopMyIaM I ABYX CHEKTPaIbHbIX 3a1a4. CpaBHEHHE PE3yIbTATOB NPOBCICHHBIX BBIUHCICHUH
MPUOKEHHBIX COOCTBCHHBIX 3HAYCHHUM MOKA3BIBACT, YTO JJI JOCTATOYHO OONBIINX HOMEPOB OHH
MPaKTHYCCKU COBMAIAIOT. JITO MOATBEPXKAACT TOT (PaKT, UTO AN PacCMATPHUBACMBIX CIICKTPAIBHBIX 3a-
Jad U AOCTATOYHO OONBIINX HOMEPOB COOCTBCHHBIX 3HAYCHUIN MOXKHO HCIIONB30BaTh JHUHCHHBIC (op-
MYJIBI.

Knioueswie cnosa: cnexkmpanshas 3a0aua; Ouckpemuule ONepamopsl; NOIY0SPAHUYeHHbIe ONePamo-
Ppol; cobcmeenHble uucida i cobcmeenuvle QyHryuu onepamopa; memoo I anepruna.
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