Министерство науки и высшего образования Российской Федерации Филиал Федерального государственного автономного образовательного учреждения высшего образования

«Южно-Уральский государственный университет (национальный исследовательский университет)» в г. Нижневартовске

Кафедра «Гуманитарные, естественно-научные и технические дисциплины»

допустить к защите
Зав. кафедрой «ГЕНТД»
к.филос.н., доцент
/И.Г. Рябова /
«»2021 г.

Программное решение по автоматизации и управлению автошколы

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ ЮУрГУ-09.03.04.2021.045.ПЗ ВКР

Консультанты Экономическая часть	Руководитель работы
к.э.н., доцент	к.п.н старший преподаватель
/С.В.Данилова/	/
«»2021 г.	«»2021 г.
	Автор работы
	Обучающийся группы НвФл-422
	/
	«»2021 г.
	Нормоконтролер
	старший преподаватель
	/ Л.Н. Буйлушкина /
	«»2021 г.

Нижневартовск 2021

АННОТАЦИЯ

Попова А.И. Программное решение по автоматизации и управлению автошколы — Нижневартовск: филиал ЮУрГУ, НвФл-422: 2021, 81 стр., 35 ил., 8 табл., библиогр. список — 20 наим., 3 прил.

В рамках выпускной квалификационной работы были разработаны webприложение и мобильное приложение для автошколы, которые позволяют оптимизировать ее работу. Основной задачей ставится автоматизация административных функций по взаимодействию с курсантами и мастерами.

Проведен обзор литературных источников по теме разработки, обследована предметная область, выявлены функциональные требования к системе, проведено концептуальное и логическое проектирование баз данных для хранения необходимой информации, разработаны web-приложение и мобильное приложение для доступа к данным. А также выполнен расчет технико-экономической эффективности после внедрения приложений.

					ЮУрГУ-09.03.04.202	
Изм.	Лист	№ докум.	Подпись	Дата		
Разра	ботал	Попова А.И.			- Программное решение по автоматизации и управ- лению автошколы	
Прове	рил	Зверева Е.А.				E
Н.коні	тр.	Буйлушкина Л.Н.				
Утвеј	одил	Рябова И.Г.				(

Лит.			Лист	Листов	
В	К	Р	5	81	
Филиал ФГАОУ ВО «ЮУрГУ (НИУ)» в г. Нижневартовске кафедра «ГЕНТД»					

1.045.∏3 BKP

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ5
1 АНАЛИЗ ТРЕБОВАНИЙ И МОДЕЛИРОВАНИЕ ПРЕДМЕТНОЙ
ОБЛАСТИ7
1.1 Анализ предметной области
1.2 Анализ требований и моделирование предметной области
1.3 Обзор аналогов разработки
1.4 Требования к интерфейсу
1.5 Выбор программно-инструментальных средств разработки
2 РАЗРАБОТКА ПРОГРАММНОГО ПРОДУКТА И БАЗЫ ДАННЫХ 20
2.1 Проектирование и разработка базы данных
2.2 Разработка сервера (серверного программного обеспечения)
2.3 Разработка клиентского приложения
2.4 Проектирование интерфейса
2.5 Руководство пользователя
2.6 Руководство программиста
2.7 Тестирование продукта
2.8 Внедрение в эксплуатацию
3 ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКИЙ РАЗДЕЛ 52
3.1. Технико – экономическая характеристика деятельности предприятия
3.2. Анализ финансовых показателей деятельности ИП
3.3 Расчет сметы затрат на реализацию проекта

3.3.1 Составление сметы затрат
3.3.2 Оценка технико-экономической эффективности
3.4 Анализ чувствительности проекта к рискам
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
ПРИЛОЖЕНИЯ
ПРИЛОЖЕНИЕ А.ТЕХНИЧЕСКОЕ ЗАДАНИЕ68
ПРИЛОЖЕНИЕ Б. СХЕМА БАЗЫ ДАННЫХ77
ПРИЛОЖЕНИЕ В. КОМПАКТ ДИСК CD-RW78

ВВЕДЕНИЕ

Развитие и активное внедрение во все сферы жизни информационных технологий привело к тому, что старая модель организации управления и взаимодействия администрации автошколы с участниками образовательного процесса нуждается в модернизации. Это обусловлено ключевыми требованиями современных реалий функционирования автошколы:

- 1. Сокращение кадров администрации (упрощение процессов управления).
 - 2. Повышение производительности за счет автоматизации отчетности.
- 3. Упрощение ведения расписания занятий, их изменения и оповещения участников образовательного процесса.

Вышеизложенное позволило сформулировать цель выпускной квалификационной работы — автоматизация управления учебным процессом автошколы. В соответствии с данной целью необходимо решить основные задачи:

- 1. Провести анализ существующей системы управления учебным процессом автошколы.
- 2. Рассмотреть аналоги разрабатываемой системы управления учебным процессом автошколы.
- 3. Спроектировать и реализовать автоматизированную систему управления образовательным процессом автошколы.
 - 4. Рассчитать экономическую эффективность разработки.

С техническим заданием можно ознакомиться в приложении А.

Объектом разработки является учебный процесс в автошколе.

Предметом разработки выступает автоматизация управления учебным процессом автошколы.

Методологической основой разработки являются анализ, сравнение, абстрагирование, классификация, а также использование дедуктивного и индуктивного методов научного познания. Эмпирическую базу разработки составили:

- исследования похожей тематики;
- собственный опыт прохождения преддипломной практики;
- интервьюирование руководителя преддипломной практики.

Выпускная квалификационная работа состоит из введения, трех разделов, заключения и приложений.

В первом разделе проведены анализ предметной области и существующих систем, а также представлен обзор аналогов разработки и выбор программно-инструментальных средств разработки, процесс моделирования предметной области.

Во втором разделе представлены этапы разработки программного продукта и базы данных, а также подробное описание интерфейса приложения.

В третьем разделе рассчитана технико-экономическая эффективность разработки.

Итогом проделанной работы является программное решение для автоматизации и управлению автошколы, позволяющее решить поставленные цели и задачи.

1 АНАЛИЗ ТРЕБОВАНИЙ И МОДЕЛИРОВАНИЕ ПРЕДМЕТНОЙ ОБЛА-СТИ

1.1 Анализ предметной области

Автошкола - это специализированное учебное заведение, осуществляющее подготовку кандидатов в водители. Программа автошколы включает в себя изучение теории (правила дорожного движения, технические характеристики автомобилей и др.), и практические занятия (вождение по городу).

Администрация автошколы – персона, выполняющая административные и управленческие функции, такие как:

- 1. Управление учебным процессом.
- 2. Работа с кадрами и кадровый аудит.
- 3. Прием курсантов.
- 4. И другие.

Мастер по теории – человек, обучающий правилам дорожного движения. Основная задача мастера по теории - преподнести информацию о правилах дорожного движения большому количеству разных учеников в максимально доступном и понятном формате.

Мастер по вождению – человек, обучающий вождению транспортных средств (ТС) соответствующих категорий и подкатегорий. В трудовые функции входит проведение практических занятий по обучению вождению ТС, педагогический контроль и оценка освоения квалификации водителя ТС, планирование учебной работы и ведение учета выполнения программ производственного обучения вождению ТС и успеваемости обучающихся. [4]

Категория водительских прав обозначает группу TC, которой может управлять владелец водительского удостоверения.

Для записи на занятия администрацией составляется расписание, курсант может выбрать удобное ему и свободное время для вождения, а также отменить

запись, если он не сможет присутствовать в назначенное время. Для обмена информацией и упрощения коммуникации между курсантами, мастерами и администрацией существует чат, в новостной ленте отображаются основные события, в меню «Инструкции» доступен пример записи на занятие.

1.2 Анализ требований и моделирование предметной области

Анализ требований — часть процесса разработки программного обеспечения (далее — Π O), включающая в себя сбор требований к Π O, их систематизацию, а также выявление взаимосвязей.

Моделирование предметной области – один из начальных этапов проектирования базы данных, необходимый для выявления, классификации и формализации сведений обо всех аспектах предметной области, определяющих свойства разрабатываемой системы. [15]

Модель предметной области описывает важные понятия контекста как объекты предметной области. Предметная область при этом связывает эти объекты друг с другом.

К моделям предметных областей предъявляются следующие требования:

- формализация, обеспечивающая однозначное описание структуры предметной области;
- понятность для заказчиков и разработчиков на основе применения графических средств отображения модели;
- реализуемость, подразумевающая наличие средств физической реализации модели предметной области;
- обеспечение оценки эффективности реализации модели предметной области на основе определенных методов и вычисляемых показателей.

Важным инструментом для моделирования требований с целью представления функциональных возможностей разрабатываемого ПО или системы в целом являются диаграммы вариантов использования. Данные диаграммы описывают

взаимоотношения и зависимости между группами вариантов использования и действующими лицами (актерами), участвующими в процессе. Вариант использования обозначается на диаграмме эллипсом, внутри которого содержится его описание, обозначающее выполнение какой-либо операции или действия [2].

Для анализа требований предметной области в статьях и книгах различных авторов применяются диаграммы вариантов использования [3].

На рисунке 1.1 представлена диаграмма вариантов использования для администратора, мастера и курсанта.

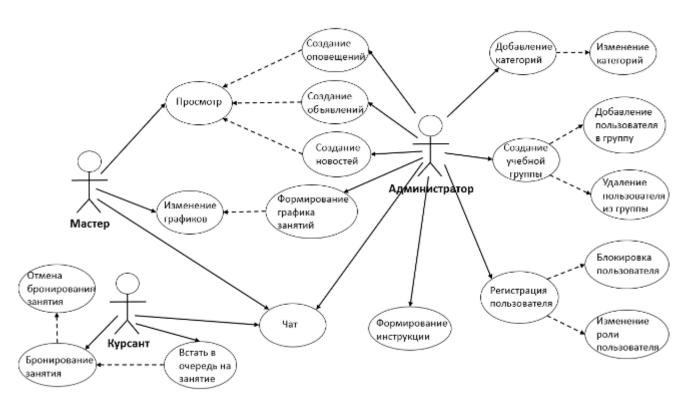


Рисунок 1.1 – Диаграмма вариантов использования

1.3 Обзор аналогов разработки

На данный момент большой популярностью пользуются следующие программы:

Программа «Автошкола», разработанная компанией «PSoft», предназначена для автоматизации и унификации документооборота в автошколе. Программа ведет учет учебных групп, учащихся, платежей, формирует все необходимые документы и отчеты.

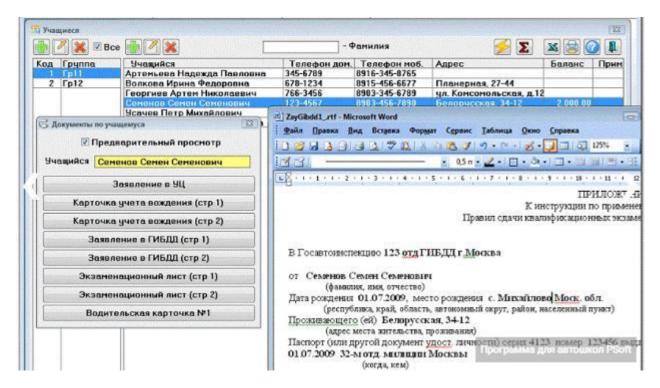


Рисунок 1.2 – Карточка учащегося

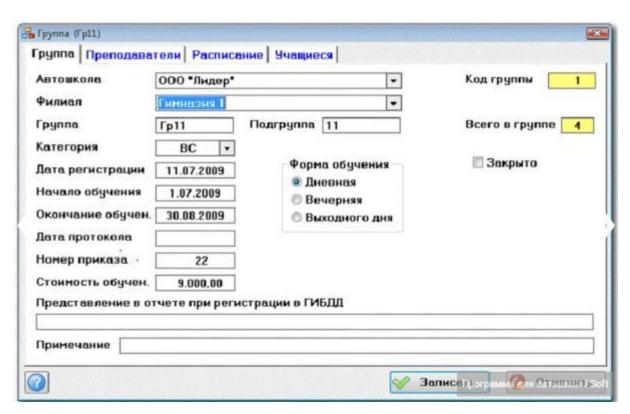


Рисунок 1.3 – Информация по группе

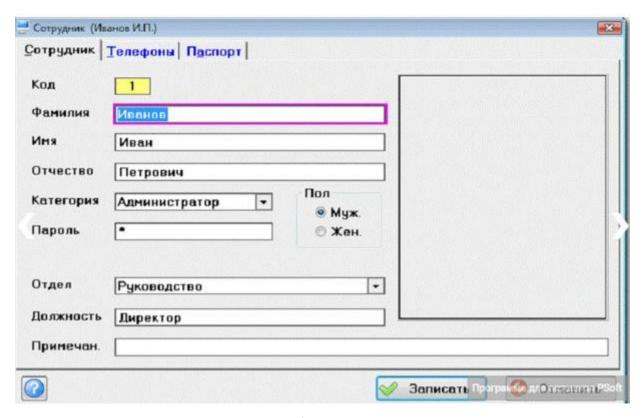


Рисунок 1.4 – Информация о сотруднике

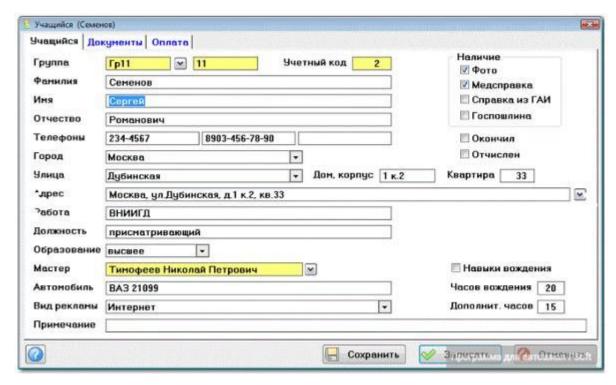


Рисунок 1.5 – Информация об учащемся

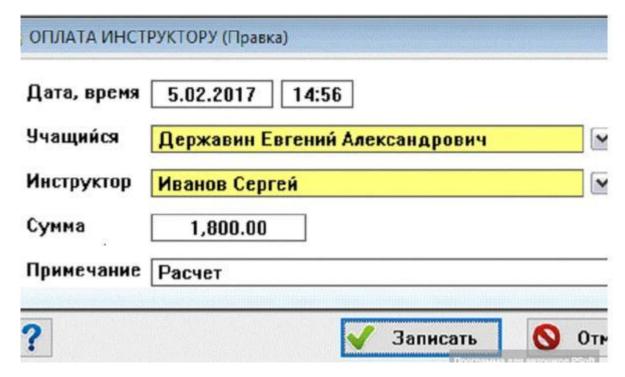


Рисунок 1.6 – Оплата инструктору

Автошкола «Контроль» — это программа, которая была создана специально для организаций, специализирующихся на подготовке водителей различных транспортных средств. [5]

В возможности программы автошколы «Контроль» входит:

- 1. Договоры и документооборот.
- 2. Учебные программы.
- 3. Выдача свидетельств.
- 4. Часы вождения.
- 5. Личный кабинет.
- 6. Экзамены и зачёты.
- 7. Мониторинг транспорта.

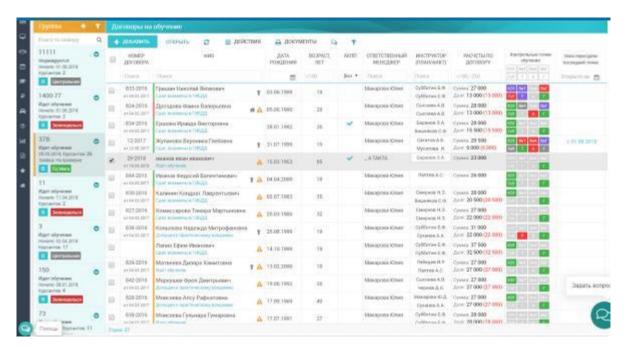
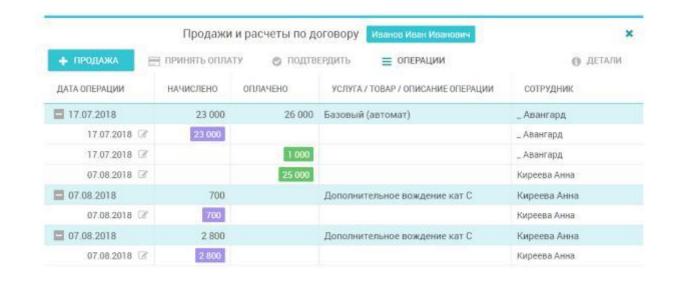



Рисунок 1.7 – Учет договоров на обучение

Итого начислено: 26 500 Итого оплачено: 26 000 Задолженность: 500

Просроченная задолженность на сегодня: 500

Рисунок 1.8 – Финансовый учет

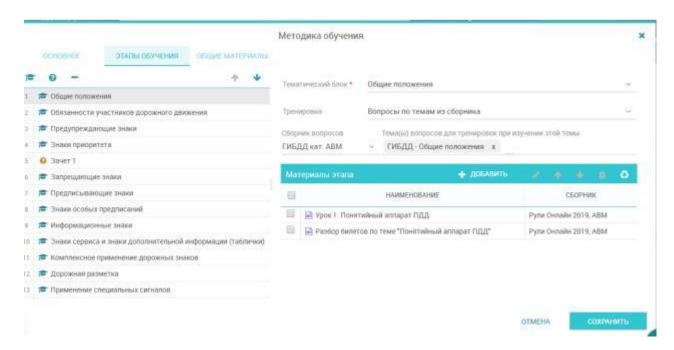


Рисунок 1.9 – Создание методики онлайн обучения

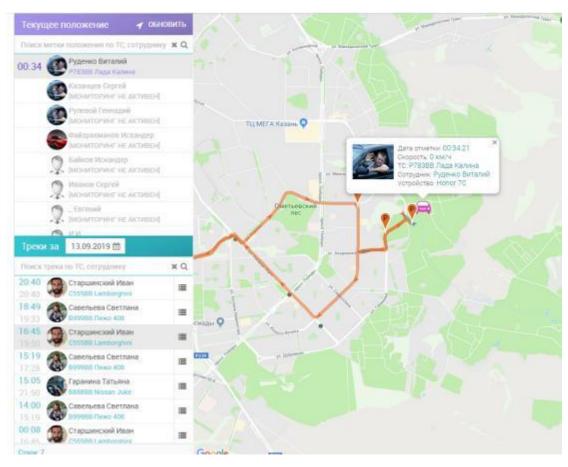


Рисунок 1.10 – Мониторинг транспорта

Рисунок 1.11 – Пример свидетельства об окончании автошколы

Программа «РунаМаркет», разработанная с помощью конструктора «Руна», позволяет автоматизировать и правильно организовать работу автошколы [6]. Программа оптимизирует следующие направления деятельности автошколы:

- 1. Ведение базы данных учеников, преподавательского состава.
- 2. Ведение базы автотранспортных средств, принадлежащих школе, а также ответственных за автотранспорт лиц.
- 3. Расчёт сроков для прохождения технического обслуживания автотранспорта.
- 4. Создание стандартных документов для оформления обучения ученика в автошколе на базе шаблонов.

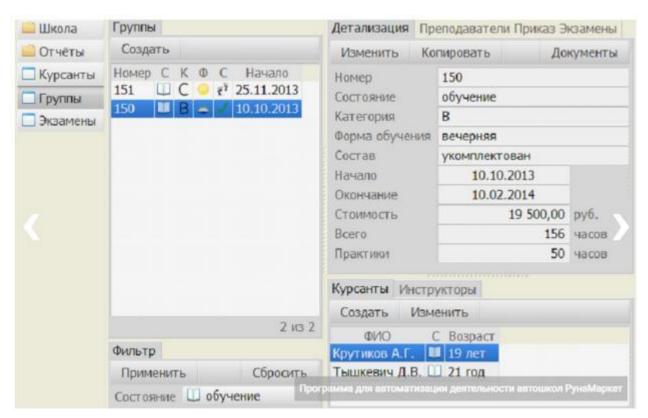


Рисунок 1.12 – Информация по группе

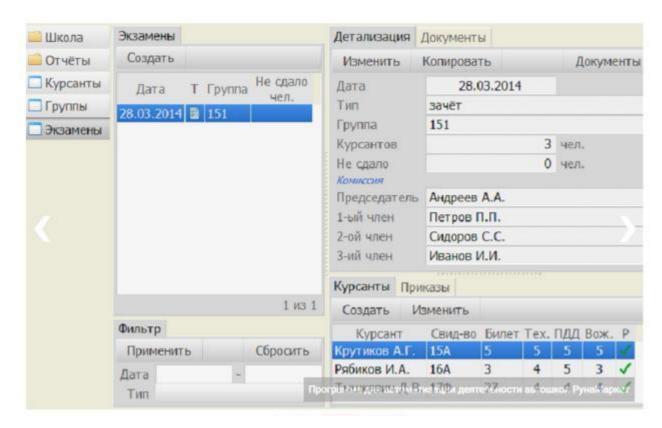


Рисунок 1.13 – Информация о зачетах и экзаменах

Главное отличие аналогов — они все предоставляются пользователю на коммерческой основе. А также они в основном больше предусмотрены для автоматизации административной работы, а разработанный нами проект предусмотрен для упрощения учебного процесса, и для коммуникации между курсантами и мастерами (имеется чат), предоставляется пользователям на безвозмездной основе.

1.4 Требования к интерфейсу

Интерфейс web и мобильного приложений должен содержать основные функциональные элементы, такие как: основное меню, шапка, кнопка возврата, основной экран

В основном меню должны содержаться, в зависимости от роли: настройки, чат, расписание, новости, инструкции.

Шапка содержит интерактивные инструменты или наименования окна, в котором находится пользователь.

Основной экран: рабочая область интерфейса, содержащая всю необходимую информацию для пользователя.

В мобильном приложении дизайн интерфейса разработан по дизайн-системе Material Design. Material — метафора, которая объединяет правильную организацию пространства и движение сущностей.

Главными преимуществами дизайн-системы являются:

- простота восприятия;
- унифицированный интерфейс на всех платформах;
- логичное поведение объектов;
- адаптивность.

Главные особенности дизайн-системы:

- минимум эффектов;
- верхние объекты отбрасывают тень на нижние;
- фигуры привязаны к одному месту с координатами по оси Z. [16]

В web-интерфейсе и мобильном приложении интерфейс должен соответствовать требованиям технического задания (см. приложение A), таким как: цветовая гамма, функциональные элементы, содержание форм.

1.5 Выбор программно-инструментальных средств разработки

После подробного анализа предметной области может быть осуществлен переход к этапу выбора программно-инструментальных средств разработки для реализации системы.

В качестве программно-инструментальных сред разработки выбраны:

PostgreSQL – свободная объектно-реляционная система управления базами данных [8]. Выбор обусловлен тем, что это мощная реляционная база данных, ко-

торая поддерживает транзакции, целостность данных и возможность написания хранимых функций на множестве языков: C, PG SQL, PGQ SQL.

GOLang – компилируемый многопоточный язык программирования, разработанный внутри компании Google [13]. Является простым, системным и высокопроизводительным языком программирования, позволяющим реализовать серверную архитектуру в короткие сроки, при этом сохранить производительность и оптимизацию работы программы, необходимую высоконагруженным системам.

Flutter – удобный, кроссплатформенный SDK, позволяющий писать нативные (родные) программы, на языке программирования Dart (высокоуровневый язык программирования, выпущенный взамен Java Script, и лишённый его недостатков).

HAProxy – высокопроизводительный прокси сервер для распределения пользовательских запросов, прост в конфигурации и использовании.

Арасhе – высокопроизводительный web-сервер для выгрузки статических данных. Прост в настройке и установке, проверен временем, очень эффективен среди web-серверов, а также очень популярен.

Немаловажным является то, что они свободно распространяемые.

Выводы по разделу один:

В данном разделе были проведены анализ требований и моделирование предметной области, рассмотрены аналоги разработки, выявлены требования к интерфейсу и описан выбор программно-инструментальных средств разработки для реализации системы.

2 РАЗРАБОТКА ПРОГРАММНОГО ПРОДУКТА И БАЗЫ ДАННЫХ

Разработка программного продукта включает в себя 6 этапов:

- 1) Проектирование и разработка базы данных.
- 2) Разработка сервера (серверного программного обеспечения).
- 3) Разработка клиентского приложения.
- 4) Проектирование интерфейса.
- 5) Тестирование продукта.
- 6) Внедрение в эксплуатацию.

2.1 Проектирование и разработка базы данных

На основе анализа и моделирования предметной области была спроектирована база данных. База данных - это структура, используемая для хранения информации. В современных базах данных хранятся не только данные, но и информация. [1]

В базе данных есть все необходимые сведения о курсантах, мастерах и администраторах. Кроме данных, база данных содержит методы и средства, позволяющие всем сотрудникам оперировать только с теми данными, которые входят в их компетенцию. В результате взаимодействия данных, содержащихся в базе, с методами, доступными конкретным сотрудникам, образуется информация, которую они потребляют и на основании которой в пределах собственной компетенции производят ввод и редактирование данных. [10]

Основная задача при проектировании базы данных - провести нормализацию до третьей стадии. После нормализации проектируются связи, далее дописываются необходимые хранимые функции. [11]

Анализ предметной области позволил выделить следующие сущности и связи между ними, представленные на рисунках 2.1-2.4 в виде ER-диаграмм [7]:

Users (id_user)

Tokens (id_token)

Gender (id_gender)

Masters (id_master)

Students (id_student)

Studentstatus (id_studentstatus)

Admins (id_admin)

Transport (id_transp)

Consworktransport (id_consworktransp)

Consmastercar (id_consmascar)

Transmission (id_transmis)

Categories (id_categor)

Color (id_color)

Consuserdialog (id_consgialog)

Chatsid (id_chat)

Messages (id_messages)

Instruction (id_instruct)

InstructionStep (id_istructstep)

Imageinstruction (id_imageinstruct)

Consworkgroup (id_consworkgroup)

Group (id_group)

GroupStatus (id_groupstatus)

News (id_new)

Imagenews (id_imagenew)

Newstegs (id_newteg)

Work (id_work)

Typework (id_typework)

Places (id_place)

Statuswork (id_statuswork)

Timeline (id_timeline)

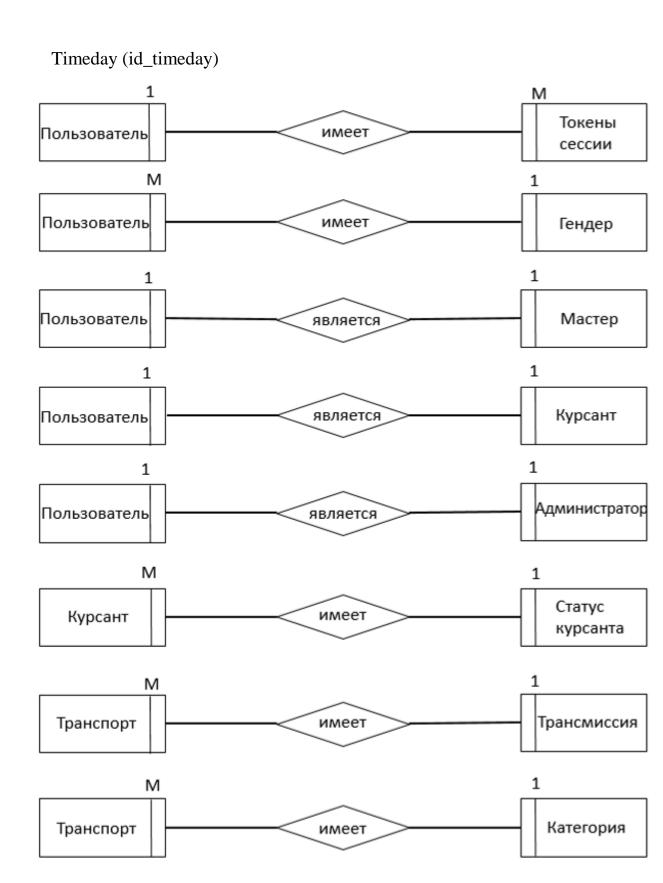


Рисунок 2.1 – Диаграммы «сущность-связь» (часть 1)

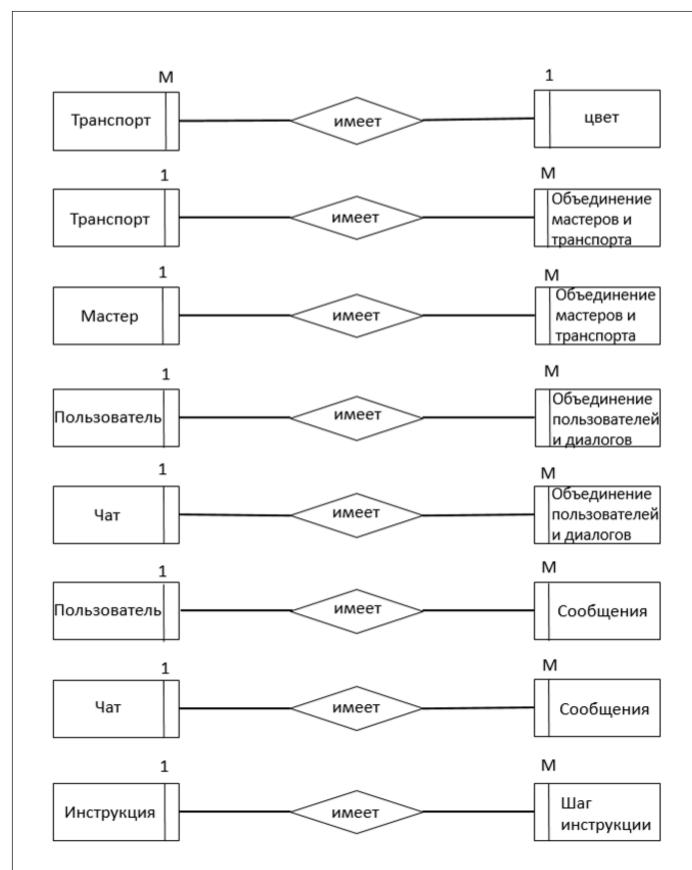


Рисунок 2.2 – Диаграммы «сущность-связь» (часть 2)



Рисунок 2.3 – Диаграммы «сущность-связь» (часть 3)

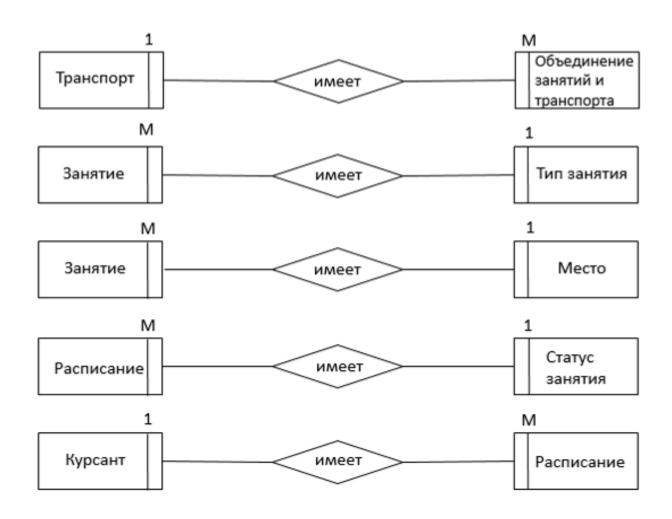


Рисунок 2.4 – Диаграммы «сущность-связь» (часть 4)

1. Рассмотрим диаграмму связи Пользователь имеет Токены сессии : т.к. СС 1:М и КП О:О, то строим 2 отношения:

Пользователь (id_user)

Токены сессии (id_tokens, id_users)

2. Рассмотрим диаграмму связи Пользователь имеет Гендер: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Пользователь (id_users, id_gender)

Гендер (id gender)

3. Рассмотрим диаграмму связи Пользователь является Мастером: т.к. СС 1:1 и КП О:О, то строим 1 отношение:

Пользователь (id_ master)

4. Рассмотрим диаграмму связи Пользователь является Курсантом: т.к. СС 1:1 и КП О:О, то строим 1 отношение:

Пользователь (id_student)

5. Рассмотрим диаграмму связи Пользователь является Администратором: т.к. СС 1:1 и КП О:О, то строим 1 отношение:

Пользователь (id_admin)

6. Рассмотрим диаграмму связи Курсант имеет Статус курсанта: т.к. СС 1:1 и КП О:О, то строим 1 отношение:

Курсант (id status)

7. Рассмотрим диаграмму связи Транспорт имеет Трансмиссию: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Транспорт (id_transp, id_transmis)

Трансмиссия (id_transmis)

8. Рассмотрим диаграмму связи Транспорт имеет Категорию: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Транспорт (id_transp, id_categor)

Категория (id categor)

9. Рассмотрим диаграмму связи Транспорт имеет Цвет: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Транспорт (id_transp, id_color)

Цвет (id_color)

10. Рассмотрим диаграмму связи Транспорт имеет Объединение мастеров и транспорта: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Транспорт (id_transp)

Объединение мастеров и транспорта (id_consmascar, id_transp)

11. Рассмотрим диаграмму связи Мастер имеет Объединение мастеров и транспорта: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Macтер (id_master)

Объединение мастеров и транспорта (id consmascar, id master)

12. Рассмотрим диаграмму связи Пользователь имеет Объединение пользователей и диалогов: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Пользователь (id_user)

Объединение пользователей и диалогов (id consgialog, id user)

13. Рассмотрим диаграмму связи Чат имеет Объединение пользователей и диалогов : т.к. СС 1:М и КП О:О, то строим 2 отношения:

Чат (id chat)

Объединение пользователей и диалогов (id consgialog, id chat)

14. Рассмотрим диаграмму связи Пользователь имеет Сообщения: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Пользователь (id user)

Сообщения (id messages, id user)

15. Рассмотрим диаграмму связи Чат имеет Сообщения: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Чат (id_chat)

Сообщения (id_messages, id_chat)

16. Рассмотрим диаграмму связи Инструкция имеет Шаг инструкции: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Инструкция (id_instruct)

Шаг инструкции (id_instructstep, id_instruct)

17. Рассмотрим диаграмму связи Шаг инструкции имеет Изображения к инструкции: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Шаг инструкции (id_instructstep)

Изображения к инструкции (id_imageinstruct, id_instructstep)

18. Рассмотрим диаграмму связи Пользователь имеет Объединение пользователей и групп: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Пользователь (id_user)

Объединение пользователей и групп (id_consworkgroup, id_user)

19. Рассмотрим диаграмму связи Группа имеет Объединение пользователей и групп: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Группа (id_group)

Объединение пользователей и групп (id consworkgroup, id group)

20. Рассмотрим диаграмму связи Группа имеет Статус группы: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Группа (id_group, id_groupstatus)

Статус группы (id groupstatus)

21. Рассмотрим диаграмму связи Новости имеют Изображение к новостям: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Новости (id new)

Изображение к новостям (id_imagenew, id_new)

22. Рассмотрим диаграмму связи Новости имеют Новостные теги: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Hовости (id_new, id_newteg)

Новостные теги (id_newteg)

23. Рассмотрим диаграмму связи Занятие имеет Объединение занятий и транспорта: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Занятие (id_work)

Объединение занятий и транспорта (id consworktransp, id work)

24. Рассмотрим диаграмму связи Расписание имеет Занятие: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Pасписание (id_timeline, id_work)

Занятие (id_work)

25. Рассмотрим диаграмму связи Транспорт имеет Объединение занятий и транспорта: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Транспорт (id_transp)

Объединение занятий и транспорта (id_consworktransp, id_transp)

26. Рассмотрим диаграмму связи Занятие имеет Тип занятия: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Занятие (id_work, id_typework)

Тип занятия (id typework)

27. Рассмотрим диаграмму связи Занятие имеет Место: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Занятие (id_work, id_place)

Mесто (id place)

28. Рассмотрим диаграмму связи Расписание имеет Статус занятия: т.к. СС М:1 и КП О:О, то строим 2 отношения:

Pасписание (id_timeline, id_statuswork)

Статус занятия (id statuswork)

29. Рассмотрим диаграмму связи Курсант имеет Расписание: т.к. СС 1:М и КП О:О, то строим 2 отношения:

Курсант (id_student)

Pасписание (id_timeline, id_student)

Получили следующие отношения:

Пользователь (id_user, id_gender, id_ master, id_student, id_admin)

Транспорт (id_transp, id_transmis, id_categor, id_color)

Токены сессии (id_tokens, id_users)

Гендер (id_gender)

Курсант (id_status)

Трансмиссия (id_transmis)

Категория (id_categor)

Цвет (id_color)

Объединение мастеров и транспорта (id_consmascar, id_transp, id_master)

Macтер (id master)

Объединение пользователей и диалогов (id_consgialog, id_user, id_chat)

Чат (id_chat)

Cooбщения (id_messages, id_user, id_chat)

Инструкция (id_instruct)

Шаг инструкции (id_instructstep, id_instruct)

Изображения к инструкции (id_imageinstruct, id_instructstep)

Объединение пользователей и групп (id consworkgroup, id user, id group)

Группа (id_group, id_groupstatus)

Статус группы (id_groupstatus)

Hовости (id_new, id_newteg)

Изображение к новостям (id_imagenew, id_new)

Новостные теги (id_newteg)

Занятие (id_work, id_typework, id_place)

Тип занятия (id_typework)

Mecто (id_place)

Объединение занятий и транспорта (id_consworktransp, id_work, id_transp)

Pacписaниe (id_timeline, id_work, id_statuswork, id_student)

Статус занятия (id_statuswork)

Схема полученных отношений представлена на рисунках 2.5-2.10.

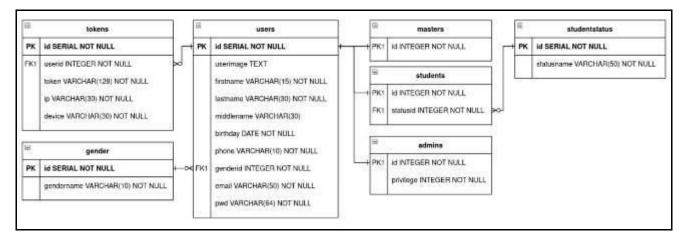


Рисунок 2.5 – Схема отношений «Пользователь»



Рисунок 2.6 – Схема отношений «Транспорт»

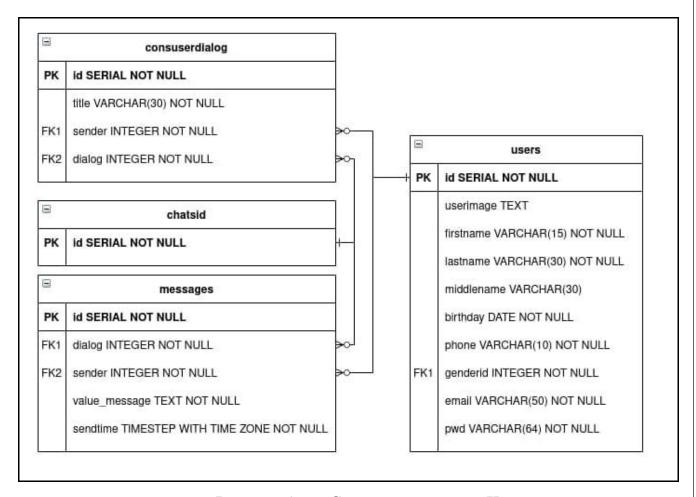


Рисунок 2.7 – Схема отношений «Чаты»

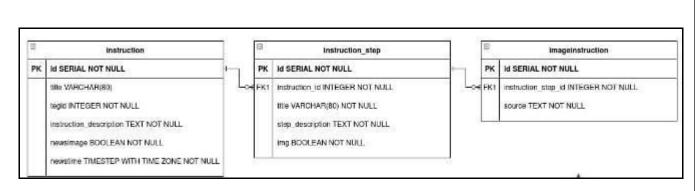


Рисунок 2.8 - Схема отношений «Инструкции»

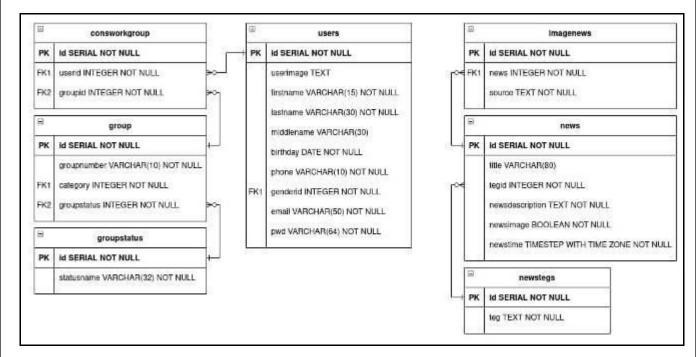


Рисунок 2.9 – Схема отношений «Группы» и «Новости»

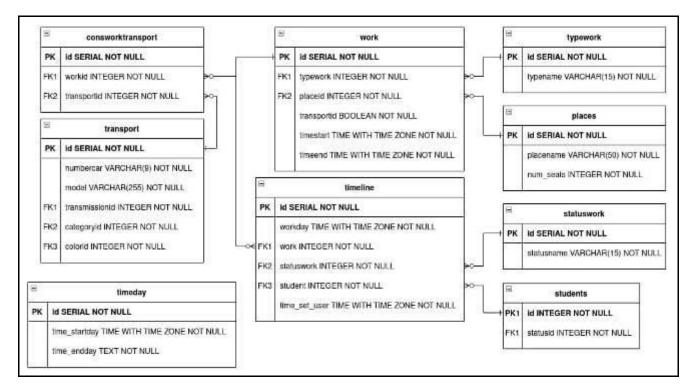


Рисунок 2.10 – Схема отношений «Расписание»

2.2 Разработка сервера (серверного программного обеспечения)

Основной функционал сервера опирается на необходимость клиентского приложения передавать или получать данные. В нашем случае модели объектов.

Основные задачи и команды, обрабатываемые сервером:

- 1. Авторизация.
- 2. Регистрация.
- 3. Выбор режима (курсант/мастер/администратор).
- 4. Восстановление доступа.
- 5. Задание пользовательского изображения
- 6. Удаление пользовательского изображения
- 7. Выгрузка расписания пользователя.
- 8. Выгрузка расписания по категории транспортного средства.
- 9. Выгрузка расписания по мастеру.
- 10. Выгрузка расписанию по дню недели.

- 11. Выгрузка свободных дней расписания по категории транспортного средства.
 - 12. Выгрузка свободных дней расписания мастера.
 - 13. Выгрузка информации для записи на занятия.
 - 14. Запись на занятие.
 - 15. Отмена записи на занятие.
 - 16. Постраничная выгрузка диалога чата.
 - 17. Отправление сообщения.
 - 18. Изменение статуса сообщения.
 - 19. Поиск по мастерам.
 - 20. Выгрузка инструкций.
 - 21. Изменение данных пользователя.
 - 22. Постраничная выгрузка новостей.
 - 23. Выгрузка статистики.
 - 24. Выгрузка групп и информации о них.
 - 25. Постраничная выгрузка пользователей и информации о них.
 - 26. Выгрузка мастеров и информации о них.
 - 27. Выгрузка администратором и информации о них.
 - 28. Выпуск группы.
 - 29. Блокировка аккаунта.
 - 30. Разблокировка аккаунта.
 - 31. Поиск по пользователям.
 - 32. Создание новости.
 - 33. Удаление новости.
 - 34. Изменение новости.
 - 35. Задание рабочего дня.
 - 36. Создание занятие.
 - 37. Удалить занятия.
 - 38. Изменение занятия.

39. Отмена занятия.

2.3 Разработка клиентского приложения

Разработка клиентского приложения делится на две части: разработка мобильного приложения и разработка web-приложения.

Мобильный интерфейс состоит из 3 структур интерфейса:

- Интерфейс курсанта самый функциональный интерфейс приложения, который вмещает в себя все возможности курсанта и нового клиента организации, за исключением возможности оплаты.
- Интерфейс мастера самый мало-функциональный интерфейс, служить только для просмотра новостной ленты, расписания, а также общения в чате.
- Интерфейс администратора наполовину нагруженный интерфейс, предоставляет возможность отмены занятий, работы в чате, работе с новостями и работа с профилями пользователей, остальной функционал будет представляться в web-интерфейсе.

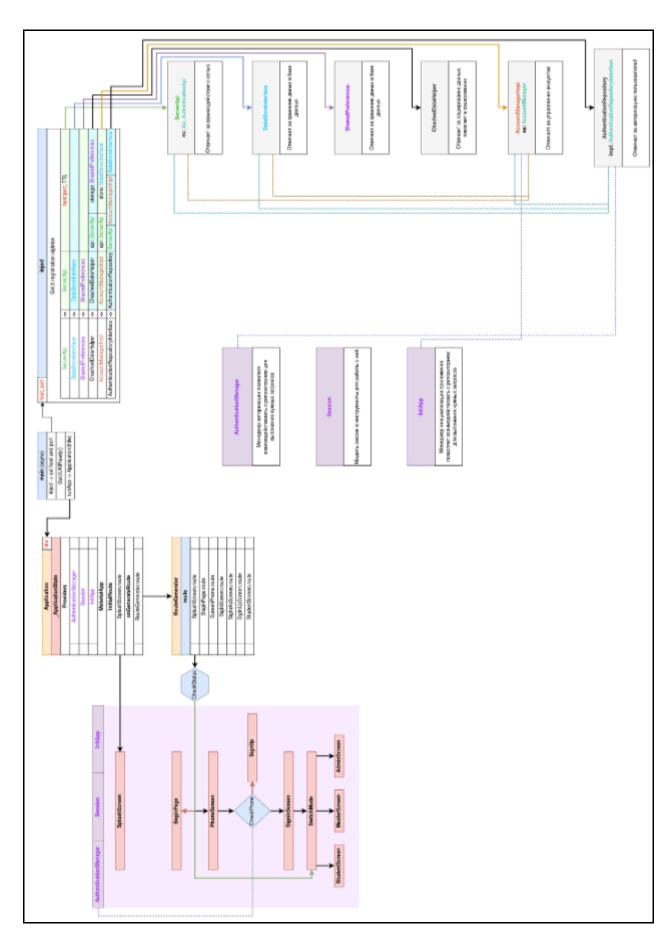


Рисунок 2.11 – Архитектура мобильного приложения

Web-интерфейс состоит из 4 структур интерфейса:

- Общий интерфейс не функциональный интерфейс, располагающий рекламой, общей информацией, документами.
- Интерфейс курсанта интерфейс приложения, который вмещает в себя все возможности курсанта, а также возможность интеграции оплаты (при необходимости).
- Интерфейс мастера функциональный интерфейс, служит только для просмотра новостной ленты, расписания, а также общения в чате.
- Интерфейс администратора функциональный интерфейс, предоставляет возможность: создания, изменения, отмены и назначения занятия, работа в чате, работа с новостями и работа с профилями пользователей и статистикой и остальной функционал.

2.4 Проектирование интерфейса

Представление идеи и функционала в виде наброска графического интерфейса с последующим введением основных моделей объектов, переходов, цветовой гаммы дизайна, и основных функциональных элементов, такие как: меню, экран оповещений.

Прототипирование интерфейса.

Прототип — это набросок продукта, в котором заключены его внешний вид, логика работы и основная функциональность. [9]

Работа над ним начинается с создания макета. Внешне он выглядит как множество прямоугольных блоков. В этих блоках заложена структура продукта и порядок взаимодействия пользователя с ним.

Рисунок 2.12 – Прототип фрагмента web-интерфейса

Рисунок 2.13 – Прототип фрагмента мобильного интерфейса

Детализированный прототип — следующий шаг по созданию пользовательского интерфейса. Этот макет является более конкретным.

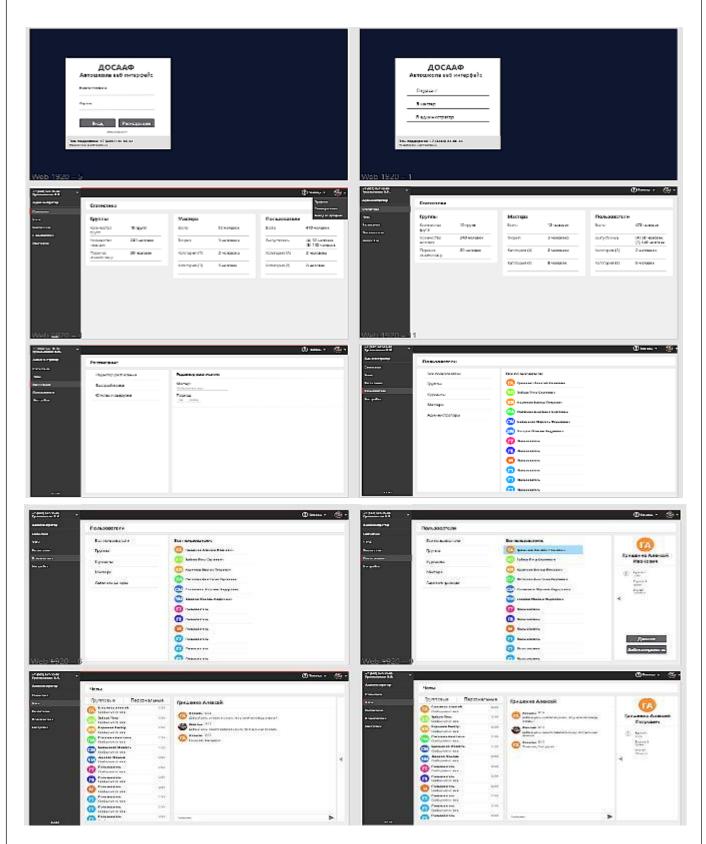


Рисунок 2.14 – Детализированный прототип фрагмента web-интерфейса

Рисунок 2.15 – Детализированный прототип фрагмента мобильного интерфейса

Далее необходимо продемонстрировать взаимодействие будущего пользователя с элементами интерфейса. Связав элементы линиями с другими экранами, на которые попадёт пользователь, мы получаем пользовательские сценарии использования приложения, или User flow.

User flow — карта навигации, по которой видно поведение пользователя мобильного приложения, как он достигает цели и как легко ему это удаётся. Внешне User flow выглядит как логически связанные друг с другом элементы интерфейса, акцент в которых сделан на действиях пользователя. [14]

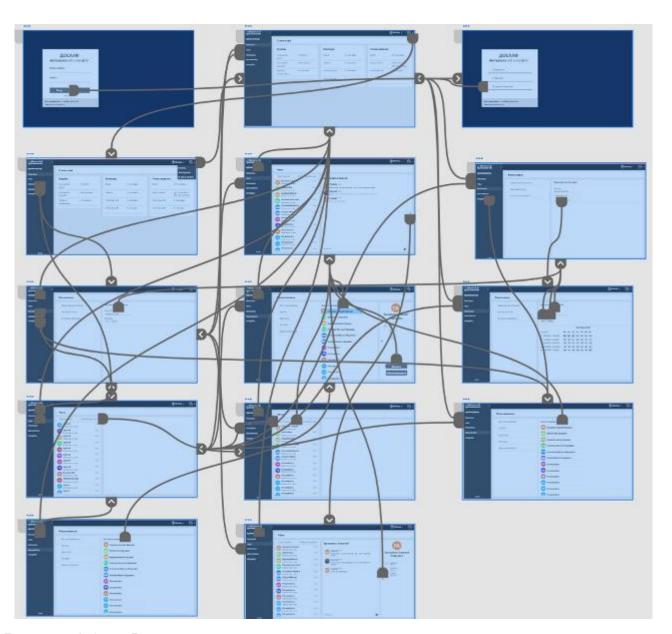


Рисунок 2.16 – Фрагмент пользовательского сценария использования приложения для web-интерфейса

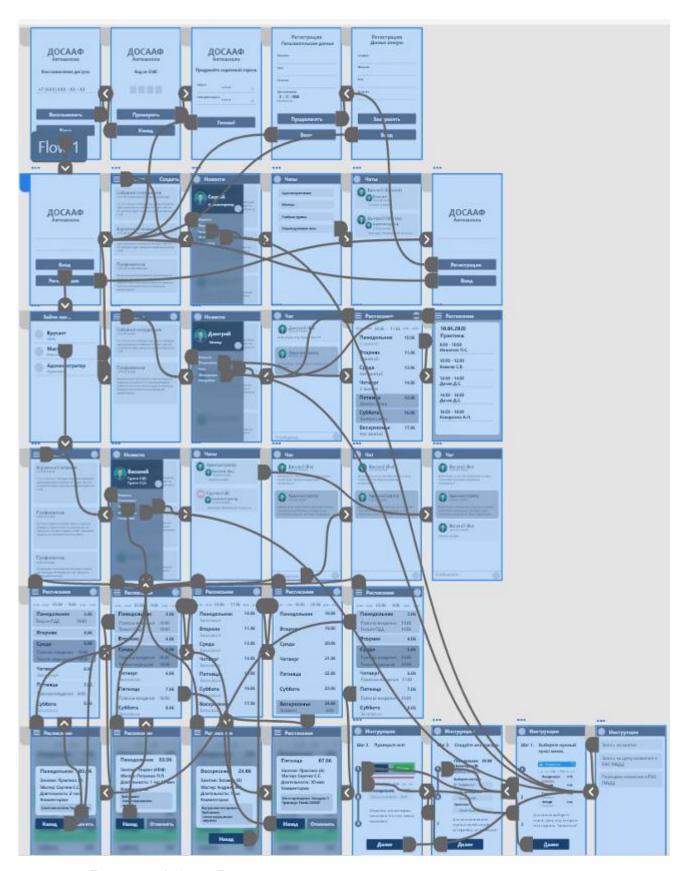


Рисунок 2.17 — Фрагмент пользовательского сценария использования приложения для мобильного интерфейса

Следующим этапом после прототипирования интерфейса является этап стилизации. Под стилизацией понимается создание фирменного стиля, который складывается из цветовой палитры, шрифта, иконок и иллюстраций.

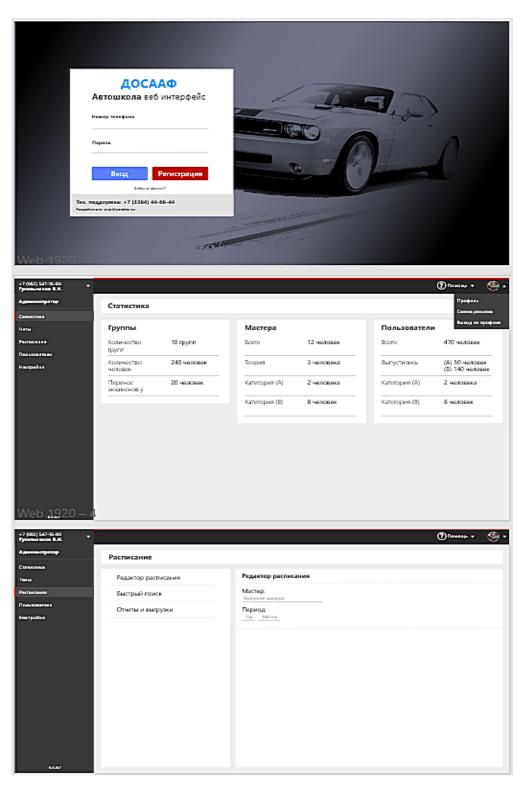


Рисунок 2.18 – Стилизация web-интерфейса (часть 1)

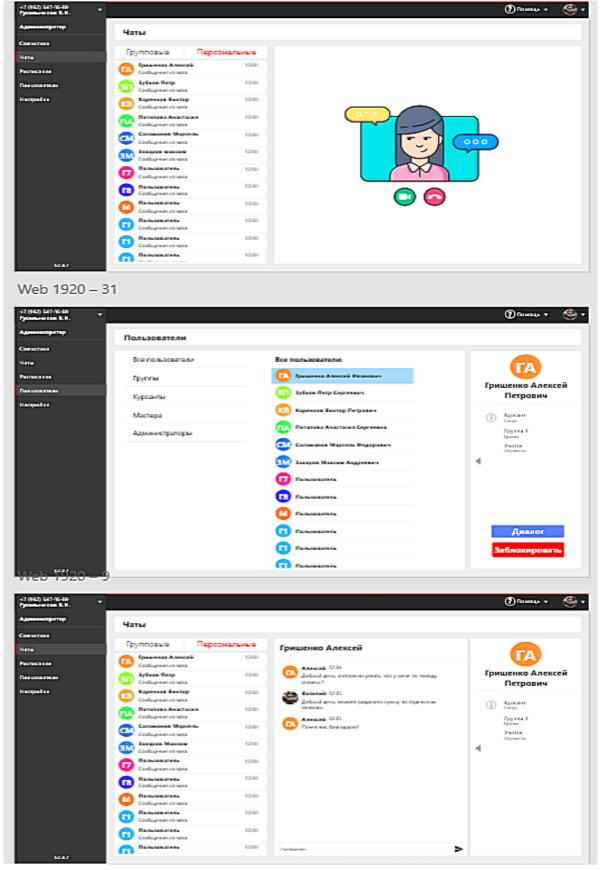


Рисунок 2.19 – Стилизация web-интерфейса (часть 2)

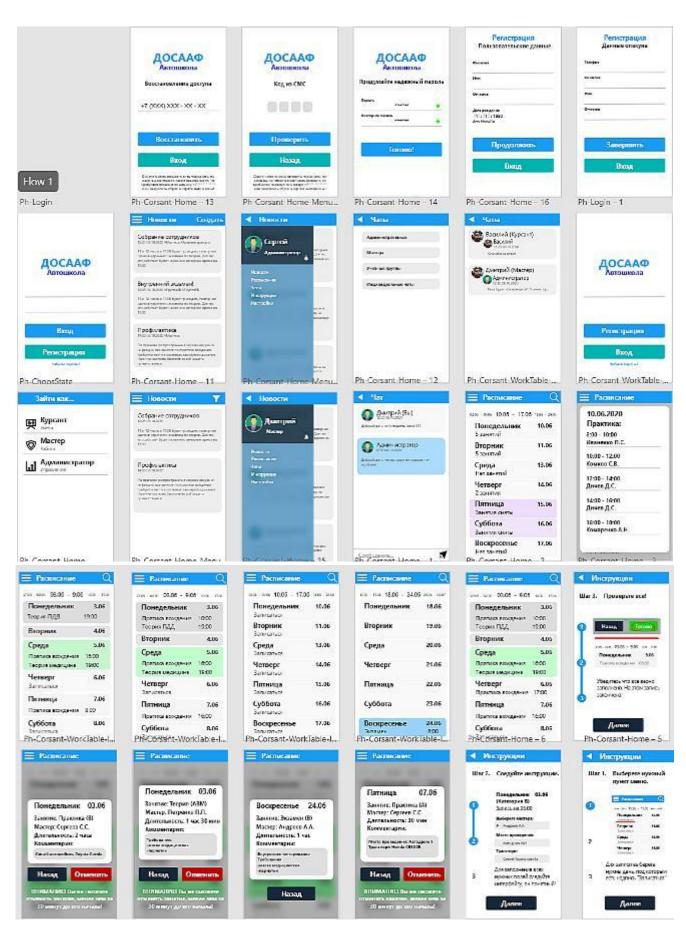


Рисунок 2.20 – Стилизация мобильного интерфейса

2.5 Руководство пользователя

Установка и запуск программы:

Web-приложение: не требует установки, запуск программы осуществляется по ссылке (домен не приобретен). Происходит выгрузка основных данных приложения в память браузера клиента, далее с точки входа в JS код происходит интерпретация программного кода в память браузера, после чего путем рендеринга графического интерфейса пользователя, мы получаем итоговую web-страницу.

Мобильное приложение: установка .АРК файла стандартными средствами Android. С момента нажатия на иконку приложения, расположенную в основном меню мобильного телефона, происходит выгрузка исполняемого кода в оперативную память устройства, после чего путем рендеринга изображения графическим движком Skia происходит отображение графического интерфейса пользователя. Одновременно с рендерингом интерфейса происходит подключение необходимых для работы приложения системных библиотек, по окончании всех перечисленных процедур, запуск приложения можно считать оконченным.

Выходная информация:

В программном продукте ведется отчет по мастерам по отведенным часам за период (день, неделя, месяц, год), а также имеется возможность экспорта графиков в форматы .pdf и .xls для ручного редактирования или печати на листе бумаги формата A4.

Отчет о недельной занятости работника

ФИО: Серпеченко Игорь Степанович Нагруженность

часов в неделю: 25 часов.

Практика: 24 часа.

Теория: 1 час.

14.06.2021	15.06.2021	16.06.2021	17.06.2021	18.06.2021	19.06.2021	20.06.2021
ПН	ВТ	СР	чт	пт	СБ	ВС
Практика 8:00- 10:00	Практика 8:00- 10:00	Теория 18:00-19:00	Практика 8:00- 10:00	-	-	-
Практика 10:00- 12:00	Практика 10:00- 12:00		Практика 10:00- 12:00			
Практика 12:00- 14:00	Практика 12:00- 14:00		Практика 12:00- 14:00			
Практика 14:00- 16:00	Практика 14:00- 16:00		Практика 14:00- 16:00			

Рисунок 2.21 – Пример отчетной документации

2.6 Руководство программиста

Системные требования к программе:

К web-приложению: 2 ядра, 2 потока, 512 МБ оперативной памяти.

К мобильному приложению: 2 ядра, 2 потока, 1 ГБ оперативной памяти сервера на базе Intel Xeon E5 26**, с минимальными системными требованиями 8/16 ядер 32 ГБ памяти; ноутбук с достаточными для комфортной разработки ресурсами: 16 ГБ памяти и 4 вычислительными ядрами.

Входная информация может быть представлена в виде:

- Ввода с клавиатуры.
- Использования оптического манипулятора типа «мышь».
- Использование сенсорного экрана телефона.

Выходные данные:

ModelNews – модель новости

ModelPlaceForList - модель мест проведения занятия для списка

```
type ModelPlaceForList struct {
ID    int    `json:"id"`
Place string `json:"place"`
Pactic bool    `json:"practic"`
Seats int    `json:"seats"`
}
```

ModelChatsForList – модель чатов для списка

```
type ModelChatsForList struct {
ID    int    `json:"id"`
Title string `json:"title"`
Person bool    `json:"person"`
}
```

ModelDialog – модель, хранящая информацию о диалоге

```
type ModelDialog struct {
ID    int    `json:"id"`
Person bool    `json:"person"`
Title string `json:"title"`
// MembersID string `json:"members"`
}
```

ModelMessage – модель сообщений

```
type ModelMessage struct {
ID    int    `json:"id"`
User    string `json:"user"`
Message string `json:"message"`
Date    string `json:"date"`
}
```

ModelGroup – модель группы

ModelInstructionShort – укороченная структура

Modelinstruction – модель инструкции

ModelInstruction – модель шага в инструкции

ModelPlaceForList – модель мест проведения занятия для списка

```
type ModelPlaceForList struct {
ID    int    `json:"id"`
Place string `json:"place"`
Pactic bool    `json:"practic"`
Seats int    `json:"seats"`
```

Обращение к программе

Мобильное приложение:

Использование стандартного установщика Android.

Web-приложение:

Требует развертывания и функционирования: прокси-сервера и сервера Арасhe 2. Все файлы приложения требуется разместить в корне web-каталога, указанного в конфигурациях сервера Арасhe.

Сервер:

Требует развертывания и функционирования: прокси-сервера, базы данных, установка сервиса средствами операционной системы на основе семейства ядра GNU/Linux.

2.7 Тестирование продукта

Проведены предварительное тестирование продукта, проверка функциональности и работоспособности основных элементов программы: клиентского приложения, сервера (серверного приложения), базы данных, а также поиск устранения уязвимостей и проверка на стабильность работы. [12]

2.8 Внедрение в эксплуатацию

Интеграция приложения, размещение его на хостинге и магазинах мобильных приложений, приобретение TLS-ключей и доменного имени для защищенного подключения к серверу. Написание подробной документации по эксплуатации программного продукта, а также сопровождение программного продукта.

Выводы по разделу два:

В данном разделе были рассмотрены этапы проектирования базы данных методом «сущность-связь», выявлены основные задачи и команды, обрабатываемые сервером, разработано клиентское приложение, представлены этапы проектирования интерфейса, описаны руководства пользователя и программиста, а также тестирование продукта и внедрение его в эксплуатацию.

3 ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКИЙ РАЗДЕЛ

3.1. Технико – экономическая характеристика деятельности предприятия

Полное официальное наименование предприятия — Индивидуальный предприниматель Гусельников Василий Иванович. Предприятие является частным. ИНН — 860330443723. ОГРНИП — 319861700084030. Дата постановки на учет — 15 ноября 2019г. Основной вид деятельности ИП — ОКВЭД 62.01 Разработка компьютерного программного обеспечения. Юридический адрес — 628600 Россия, обл. Тюменская, ХМАО-Югра, г. Нижневартовск, ул. Дружбы Народов, дом 6, кв.47. Фактический адрес — 628611, ХМАО-Югра, г. Нижневартовск, ул. Нефтяников, д. 44, кв. 183. [17]

ИП Гусельников В.И занимается разработкой компьютерного программного обеспечения на заказ.

ИП Гусельников В.И. работает по организационной структуре — индивидуальный предприниматель без работников. Всю работу выполняет сам, либо, при необходимости, руководитель ИП Гусельников В.И. пользуется услугами аутсорсинговых компаний. Таким образом, структура ИП состоит из одного работника.

Управление осуществляется в соответствии с законодательством РФ.

Руководит ИП – Гусельников Василий Иванович.

В его компетенции входит:

- осуществление текущего руководства деятельностью;
- заключение договоров, контрактов, подписание актов выполненных работ;
- предоставление в органы всех форм отчетностей о деятельности учреждения и др.;
- работа с банками, в которых открыты расчетные счета компании, в том числе предоставление в банк платежных поручений, запросы и получение выписок и т.п.

- разработка, интеграция, тестирование, сопровождение компьютерного
 ПО.
 - учет движения денежных средств;
- оформление, прием и выдача, а также контроль за движением первичной бухгалтерской документации (счета, акты, накладные и т.п.);
- разработка бланков бухгалтерских документов для оформления различных финансово-хозяйственных операций, при отсутствии их официально утвержденных, обязательных к применению образцов;
- работа с налогооблагаемой базой, расчет налогов и их перечисление в бюджеты разного уровня;
 - составление бухгалтерской и налоговой отчетности.

В ИП Гусельников В.И. любое взаимодействие происходит по договору, акту выполненных работ, взаимодействие осуществляется только с ИП или юридическими лицами. Количество договоров зависит от количества заказов, в среднем 1 заказ в месяц. Стоимость одного заказа составляет от 30 до 70 тысяч рублей. Несколькими крупными разработками ИП являются — приложение для такси «FullDriver» и программа для онлайн обучения «OnStudy».

ИП Гусельников В.И. не смотря на свою малую организацию, имеет большое количество взаимодействий с внешними партнерами, заказчиками.

3.2. Анализ финансовых показателей деятельности ИП

Главным финансовым показателем деятельности является выручка и прибыль, информация о динамике финансовых результатов деятельности ИП Гусельников В.И. за 2019 – 2020 гг. расположена в таблице 3.1 и на рисунке 3.1.

Таблица 3.1 – Динамика финансового результата деятельности ИП Гусельников В.И.

Показатели	Ед.изм	Факт 2019 г.	Факт 2020 г.	Отклонение
Прибыль от				
реализации	руб.	720 000	760 000	40 000
продукта				
Себестоимость				
проданных	руб.	299 404,9	299 804,9	400
услуг				
Валовая при-	ny6	420 595,1	460 195,1	39 600
быль	руб.	420 393,1	400 193,1	39 000
Налоги (5%)	Руб.	21 029,76	23 009,76	1 980
Чистая при-	nys	399 565,35	437 185,34	37 619,99
быль	руб.	377 303,33	437 103,34	37 019,99

ИП Гусельников В.И. находится на УСН (Упрощенная система налогообложения) 5% для объекта «доходы минус расходы» (т.е. от валовой прибыли).

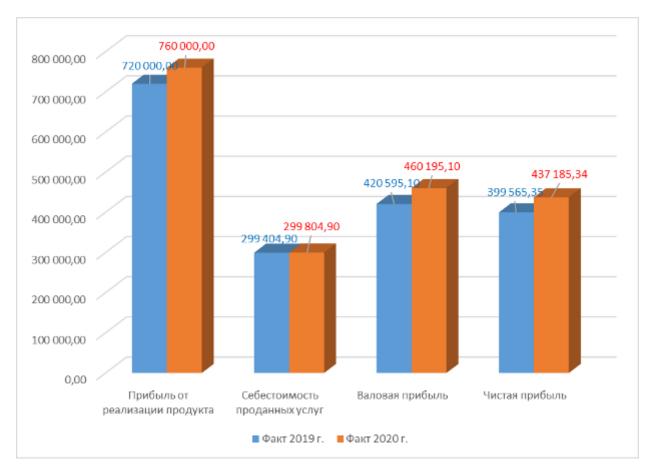


Рисунок 3.1 – Основные финансовые показатели деятельности в рублях

Из рисунка 3.1 видно, что чистая прибыль ИП в 2020 г. значительно выросла по сравнению с 2019 г. в основном за счет роста выручки от реализации.

В таблице 3.2 представлены данные о динамике прибыли ИП Гусельников В.И.

Таблица 3.2 – Экономические показатели деятельности ИП

Показатели	Ед.изм	Факт 2019 г.	Факт 2020 г.	Факт 20 Факт 20	
Среднесписочная численность	Чел.	1	1	0	100
Прибыль от реализации продукта ($\Pi_{P\Pi}$)	Руб.	720 000	760 000	40 000	105,5
Себестоимость проданных услуг (С)	Руб.	299 404,9	299 804,9	400	100,1
Валовая прибыль (ВП)	Руб.	420 595,1	460 195,1	39 600	109,4
Налоги (5%)	Руб.	21 029,76	23 009,76	1 980	109,4
Чистая прибыль (ЧП)	Руб.	399 565,35	437 185,34	37 619,99	109,4
Рентабельность реализации продукта ($P_{P\Pi}$)	%	2,4	2,5	0,1	-

При расчете себестоимости учитываются плановые отчисления на социальные нужды и в бюджет, которые представлены в таблице 3.3.

Таблица 3.3 – Отчисления во внебюджетные фонды от дохода ИП в год

Отчисления	2019 г. Сумма, руб.	2020 г. Сумма, руб.
Отчисления в пенсионный фонд Российской Федерации (ПДР)	32 448,00	32 448,00
Дополнительный взнос	4 200,00	4 600,00
Отчисления в Федеральный фонд обязательного медицинского страхования	8 426,00	8 426,00
ИТОГО:	45 074, 00	45 474, 00

Страховые взносы ИП на обязательное пенсионное страхование (ОПС) составляют фиксированную сумму, установленную НК РФ - 32 448 рублей за полный год.

Дополнительный взнос платят, если доходы ИП больше 300 тыс. рублей в год. Рассчитывается он как 1% от суммы доходов, превышающих этот лимит.

В нашем случае:

2019 г.:

 $720\ 000 - 300\ 000 = 420\ 000\ \text{py}$ 6.

1% от $420\ 000 = 4\ 200$ руб.

2020 г.:

 $760\ 000 - 300\ 000 = 460\ 000\ \text{py}$ 6.

1% от $460\ 000 = 4\ 600$ руб.

Взносы на обязательное медицинское страхование (ОМС) - 8 426 рублей в год.

Изучив данные, представленные в таблицах 3.1, 3.2 можно сделать следующие выводы:

- В 2020 г. Выручка от реализации увеличилась по сравнению с 2019 г. на 40 тыс. руб., в том числе: валовая прибыль на 39 600 руб., и чистая прибыль на 37 619,99 руб.
- Темп роста чистой прибыли составил 109,4%, в том числе: темп роста валовой прибыли составил 109,4%, а выручка от реализации на 105,5%.

Изучив таблицу 3.2, характеризующую сумму валовой и чистой прибыли в динамике за 2019 – 2020 гг. в ИП, можно сделать следующие выводы: финансовое положение ИП стабильно, а рост его чистой прибыли имеет положительную тенденцию и свидетельствует о том, что финансовые резервы для увеличения прибыли распределяются эффективно.

- 3.3 Расчет сметы затрат на реализацию проекта
- 3.3.1 Составление сметы затрат

Сметная стоимость работ по разработке программного продукта включает следующие статьи затрат:

- Затраты на материалы и электроэнергию.
- Контрагентские расходы.
- Накладные расходы.

Расчет затрат на материалы и электроэнергию, необходимые для разработки программного продукта представлен в таблице 3.4.

Произведем расчет потраченной электроэнергии.

Считаем, что за один час работы за ноутбуком расходуется 0,15 кВт/ч электроэнергии. За время разработки конфигурации время работы за ноутбуком составляло 4 ч. Отсюда следует, что за 4 часа будет потрачено:

$$0.15 \times 4 = 0.6 \text{ kBT/4}.$$

Следовательно, за 22 рабочих дня, по 4 часа работы за ноутбуком, получается:

$$22 \times 4 = 88$$
 часов.

За месяц работы получаем расход электроэнергии в размере:

$$88 \times 0.15 = 13.2 \text{ kBT/y}.$$

Работа над проектом длилась 9 месяцев. Таким образом, за 9 месяцев работы получаем расход электроэнергии в размере:

$$13,2 \times 9 = 118,8 \text{ kBT/y}.$$

Отсюда следует, что при стоимости электроэнергии (на момент разработки конфигурации) 2,97 рублей за 1 кВт/ч, затраты на электроэнергию составят:

$$118,8 \times 2,97 = 352,84$$
 рублей.

За месяц расход электроэнергии составил 39,20 руб.

Таблица 3.4 – Затраты на материалы и электроэнергию рублей за 9 месяцев

Наименование	Единица измерения	Цена за еди- ницу, руб.	Количество	Стоимость, руб.
Бумага для принтера, A4	пачка	200,00	1	200,00
Электроэнергия	кВ×ч	2,97	118,8	352,84
Ручка	ШТ	20,00	2	40,00
ИТОГО:	592,84			

В статью «Контрагентские расходы» включается стоимость работ, выполненных сторонними организациями. В нашем случае такими расходами являются использование интернета и заправка картриджа для принтера. В таблице 3.5 представлен расчет затрат по статье «Контрагентские расходы».

Таблица 3.5 – Контрагентские расходы

Наименование работы	Кол-во	Цена за еди- ницу, руб.	Стоимость, руб.
Предоставление доступа в интернет в квартал	3 квартала (9 мес.)	2 625,00	7 875,00
Заправка картриджа для принтера	1	500,00	500,00
ИТОГО:			8 375,00

При разработке программного продукта был использован ноутбук стоимостью 62 000 рублей со сроком полезного использования 37 месяцев.

Рассчитаем процент ежемесячных амортизационных отчислений:

$$\frac{1}{37} \times 100\% = 0.027\%$$
.

В месяц амортизация ноутбука составляет:

$$62000 \times 0,027\% = 1674$$
рублей.

Амортизация компьютера за период разработки в 9 месяцев составит:

$$1674 \times 9 = 15066$$
 рублей.

Также использовался принтер стоимостью 30 000 рублей со сроком полезного использования 37 месяцев.

В месяц амортизация принтера составит:

 $30000 \times 0,027 = 810$ рублей.

Амортизация принтера за период разработки в 9 месяцев составит:

 $810 \times 9 = 7290$ рублей.

Таким образом, амортизация оборудования равна 22 356 рублей.

Полная смета затрат представлена в таблице 3.6

Таблица 3.6 – Смета общих затрат за 9 месяцев, руб.

Статья затрат	Сумма, руб.
Затраты на материалы и электроэнергию	592,84
Контрагентские расходы	8 375,00
Амортизация оборудования	22 356,00
ИТОГО:	31 323,84

Таким образом, сумма всех затрат на создание сервиса по автоматизации автошколы составило 31 323,84 руб.

3.3.2 Оценка технико-экономической эффективности

Для того чтобы оценить эффективность создания сервиса по автоматизации автошколы, рассчитаем показатели экономической эффективности – таблица 3.7.

Таблица 3.7 – Расчет показателей экономической эффективности

Показатель		Ед. показателей	Кол-во	Доход
Месячное готового продукта	обслуживание программного	3 000 руб.	12 месяцев	36 000 руб.
Зарплата (стоимость	программиста готового ПО)	65 000 рублей	1 раз	65 000 рублей

Зарплата программиста (или стоимость готового ПО) составляет 65 000 рублей, что уже превышает затраты на 28 676,16 рублей. Общий годовой доход составит:

36000 + 65000 = 101000 рублей.

Таким образом, проект сразу окупится.

Вывод: Затраты на создание проекта составили 31 323,84 руб. Стоимость проекта составляет 65 000 рублей. Обслуживание готового ПО составляет 36 000 рублей в год. Таким образом, создание сервиса по автоматизации автошколы является экономически эффективным и быстро окупаемым проектом.

3.4 Анализ чувствительности проекта к рискам

Риск – неопределенное событие или множество событий, которые в случае реализации окажут влияние на достижение целей.

Система управления профессиональными рисками - это непрерывный процесс, требующий постоянного анализа хода проекта, переоценки и адаптации политики управления рисками и планов реагирования.

Рассмотрим анализ возможных рисков нашего проекта.

Таблица 3.8 – Анализ рисков

Риск	Последствия	Меры по предот-	Меры по миними-
THEK	наступления риска		зации
Реализация несоответствующей функциональности	Пользователю будет предоставлена программа, не соответствующая его ожиданиям, в которой не реализо-	Подробная беседа с пользователем о желаемом функционале программы, предоставление ранней версии продукта для те-	Внесение нерациональных, с точки зрения поддерживаемости кода, изменений, позволяющие с минимальным вложением сил и времени реализовать необходимый функционал, жертвуя при этом возможностью дальнейшего развития данного кода и вероятностью возникновения багов
Разработка неправильного пользовательского интерфейса	Следствием неправильной настройки пользовательского интерфейса является негативный пользовательский опыт: отсутствие интуитивно понятных элементов интерфейса, неочевидное поведение программы, при взаимодействии с элементами интерфейса и т.д.	Изучение материалов на тему пользовательского интерфейса, применение хороших практик в своем программном продукте, обязательное тестирование программы на пользователе и внесение изменений на основе отзывов	В лучшем случае: Изменение цветов, масштаба, расположения элементов интерфейса В худшем случае: изменение логики взаимодействия между интерфейсом и бизнеслогикой программы.

Окончание таблицы 3.8

Написание не-	С каждой напи-	Предварительное	Минимизация
поддерживаемого	санной строчкой	планирование	крайне маловеро-
кода	кода программу	всех аспектов	ятна, в большин-
	все сложнее под-	устройства про-	стве случаев при-
	держивать в плане	граммы. Приме-	дется вложить
	добавления до-	нение хороших	огромное количе-
	полнительной	практик при кон-	ство ресурсов и
	функционально-	струировании	времени для реше-
	сти или внесения	программы. Со-	ния возникших
	изменений в су-	ставление доку-	проблем, попытках
	ществующую ло-	ментации всех	разобраться в
	гику	функций про-	написанном коде и
		граммы	Т.Д.
Отсутствие каче-	Высока вероят-	Написание тестов	Минимизация
ственного тести-	ность появления	для каждого мо-	крайне маловеро-
рования про-	багов или крити-	дуля программы.	ятна, так как тесты
граммных моду-	ческого заверше-	Своевременное	позволяют изна-
лей	ния работы про-	внесение измене-	чально отловить
	граммы	ний на основе ре-	все ошибки в про-
		зультатов тестов	грамме, то уже го-
			товый код, как пра-
			вило, придется
			полностью перепи-
			сывать, на что уй-
			дет огромное коли-
			чество ресурсов и
			времени

Исходя из оценивания рисков при разработке, можно выявить следующую тенденцию: основные риски связаны с поддерживаемостью программы и написанием качественного кода. Риск заключается в том, что любая попытка внесения изменений в логику работы программы может повлечь за собой последствия, которые приведут к неправильной работе программы или к ее экстренному завершению.

Следуя анализу оценки рисков, для их предотвращения необходимо:

— Заранее изучить предметную область.

- Заранее спланировать логику программы.
- Провести беседу с пользователем для тщательного выявления потребностей.
- Проводить тестирование каждого модуля программы, перед использованием его в конечном продукте.
- Предоставлению пользователю ранней версии программы, для внесения изменений на основе отзывов на ранних стадиях разработки.

Выводы по разделу три:

Таким образом, экономический расчет проекта, выполняемого в рамках выпускной квалификационной работы, показывает, что разработка программы по автоматизации и управлению автошколы является экономически эффективной, быстро окупаемой, имеет небольшие риски и принесет прибыль ИП.

ЗАКЛЮЧЕНИЕ

В результате выполнения выпускной квалификационной работы были выявлены функциональные требования и задачи на основе анализа предметной области и пожеланий заказчика, проведен анализ существующей системы управления учебным процессом автошколы и рассмотрены аналоги разрабатываемой системы, обоснован выбор программно-инструментальных средств разработки проекта, спроектирована база данных методом «сущность-связь», разработаны интерфейс, клиентское приложение и сервер, а также было проведено предварительное тестирование продукта.

В экономической части рассчитана экономическая эффективность программного продукта, проведен анализ чувствительности проекта к рискам и выявлены способы их предотвращения.

Таким образом, выполнение поставленных задач, позволило автоматизировать учебный процесс автошколы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1 Голицына, О.Л. Базы данных: Учебное пособие / О.Л. Голицына, Н.В. Максимов, И.И. Попов. М.: Форум, 2012. 400 с.
- 2 UML диаграмма вариантов использования [Электронный ресурс]. режим доступа URL: https://habr.com/post/47940/, свободный. [дата обращения 06.01.2021]
- 3 Романникова, Д.О. Пример применения методики разработки по с использованием uml диаграмм: Статья в журнале научная статья / Д.О. Романников, А.В. Марков. Издательство «научные вести НГТУ», 2012.
- 4 Приказ Министерства труда и социальной защиты РФ (603 н) от 28.09.2018 «Мастер производственного обучения вождению транспортных средств соответствующих категорий и подкатегорий» [Электронный ресурс]. режим доступа URL: https://files.stroyinf.ru/Index2/1/4293734/4293734142.htm, свободный. [дата обращения 13.03.2021]
- 5 Автошкола «Контроль» облачный сервис для комплексной автоматизации автошколы [Электронный ресурс]. режим доступа URL: https://dscontrol.ru/, свободный. [дата обращения 15.03.2021]
- 6 Программа для автоматизации деятельности автошкол РунаМаркет [Электронный ресурс]. режим доступа URL: https://biznesplan-primer.ru/programma/avtoshkola/runa-market, свободный. [дата обращения 16.03.2021]
- 7 Лекция 6: Метод моделирования «Сущность связь» [Электронный ресурс]. – режим доступа URL: https://www.intuit.ru/studies/courses/599/455/lecture/10163, свободный. [дата обра-
- 8 Вендров, А.М. Один из подходов к выбору средств проектирования баз данных и приложений. «СУБД» / А.М. Вендров, 1995, №3.
 - 9 Купер, А. Об интерфейсе / А. Купер, 2017. 688 с.

щения -20.04.2021]

- 10 Роберт, Дж. Мюллер. Проектирование баз данных и UML / Роберт Дж. Мюллер М.: Лори, 2013. 432 с.
- 11 Нормальные формы более высоких порядков [Электронный ресурс]. режим доступа URL: http://citforum.ru/database/dblearn/dblearn07.shtml, свободный. [дата обращения 21.04.2021]
- 12 Коликова, Т.В. Основы тестирования программного обеспечения / Т.В. Коликова, В.П. Котляров. М., Бином, 2010, 285 стр.
- 13 GoLang: основы для начинающих [Электронный ресурс]. режим доступа URL: https://tproger.ru/translations/golang-basics/, свободный. [дата обращения 02.05.2021]
- 14 Этапы разработки пользовательского интерфейса [Электронный ресурс]. режим доступа URL: https://vc.ru/design/58502-etapy-razrabotki-polzovatelskogo-interfeysa-kak-sdelat-tak-chtoby-ui-ne-lishil-vas-pribyli, свободный. [дата обращения 03.05.2021]
- 15 Брауде, Э. Технология разработки программного обеспечения / Э. Брауде М.: Питер, 2004. 656 с.
- 16 Дизайн-система Material Design [Электронный ресурс]. режим доступа URL: https://idbi.ru/blogs/blog/dizayn-sistema-material-design, свободный. [дата обращения 01.04.2021]
- 17 Сайт налоговой службы по предоставлению сведений из ЕГРЮЛ/ЕГРИП [Электронный ресурс]. режим доступа URL: https://egrul.nalog.ru/index.html, свободный. [дата обращения 08.05.2021]
- 18 ГОСТ 22.771-77 Требования к информационному обеспечению Москва: Издательство стандартов, 2011. 56 с.
- 19 Информационно-аналитическая система Универис [Электронный ресурс] режим доступа: http://www.univeris.susu.ru/SitePages/Home.aspx Загл. с экрана. [дата обращения 25.05.2021]
- 20 Методические рекомендации по подготовке и оформлению выпускной квалификационной работы (проекта) для технических направлений подготовки

09.03.01 Информатика и вычислительная техника, 09.03.04 Программная инженерия, 12.03.01 Приборостроение, 23.03.01 Технология транспортных процессов / сост. Л.Н.Буйлушкина. – Нижневартовск, 2017. – 35 с.

- 21 ГОСТ 34.003-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Термины и определения Москва: Издательство стандартов, 2009. 16 с.
- 22 ГОСТ 34.602-89 Информационная технология. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы Москва: Издательство стандартов, 2009. 12 с.

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ А. ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Техническое задание на разработку «Сервиса по автоматизации автошколы»

1 ОБЩИЕ СВЕДЕНИЯ

1.1 Основание для выполнения работ

Основанием для проведения работ по созданию системы АИС «Сервис администрирования автошколы» является данное техническое задание и все приложения, зафиксированные подписью заказчика на каждой странице.

1.2 Наименование заказчика и исполнителя

Разработчик:

Попова Анна Игоревна

Адрес: Российская Федерация, 628600, г. Нижневартовск, ул. Дружбы Народов, д.6, кв.47

Тел.: +7 (912) 936-26-78

Заказчик:

ПОУ Нижневартовский УЦ РО ДОСААФ России ХМАО-Югры

Адрес: Российская Федерация, 628624, г. Нижневартовск, ул. Мира, д.78, 2-5 этаж, 2 подъезд.

Тел.: +7 (3466) 43-45-40

Продолжение приложения А

1.3 Сроки начала и окончания работ

Дата начала работ: 28.09.2020

Дата окончания работ: 31.05.2021

1.4 Источники и порядок финансирования работ

Работа не финансируется, выполняется в рамках выпускной квалификацион-

ной работы.

1.5 Порядок сдачи работ заказчику

Работы по созданию Системы производятся и принимаются по завершению

разработки и тестированию продукта.

По окончанию интеграции в производство Разработчик представляет Заказ-

чику соответствующую документацию и подписанный со стороны Разработчика

Акт сдачи-приемки работ, добавляемое в приложение основного договора, в

нашем случае технического задания.

2 ЦЕЛИ СОЗДАНИЯ СИСТЕМЫ

Основной целью перед сервисом ставится автоматизация административных

задач, по взаимодействию курсантов, мастеров и администраторов, а также упро-

щение административных функций.

Лист

3 КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА АВТОМАТИЗАЦИИ

Объектом автоматизации является учебный процесс в автошколе.

Сервис будет состоять из 3 основных программных компонентов: web-приложение (сайт), мобильное приложение, сервер. Взаимодействие с сервисом будет доступно по доменному имени, предоставляемого заказчиком, если имя не будет предоставлено заказчиком, то исполнитель сам задаст имя, например, auto-dosaaf.scar.ru. Сервис должен обеспечивать круглосуточную работу.

3.1 Работа с отчетами

В программном продукте ведется отчет по мастерам по отведенным часам за период (день, неделя, месяц, год), а также имеется возможность экспорта графиков в форматы: PDF и Excel для ручного редактирования или печати на листе бумаги A4.

4 ТРЕБОВАНИЯ К СИСТЕМЕ

4.1 Требования к системе в целом

4.1.1 Требования к функциональным характеристикам

Язык интерфейса – русский;

Монетизация – не предусмотрена;

Способ оплаты – не предусмотрено;

Способы обучения – очные и дистанционные занятия;

История занятий – по каждому курсанту ведется история его занятий.

В сервисе по администрированию планируется автоматизировать:

- размещение расписания;
- запись на занятия;
- отмена занятий;
- оповещение об отмене занятий;
- инструкции;
- новости от администрации.

4.1.2 Требования к численности персонала

Количество пользователей определяется текущими потребностями организации.

4.1.3 Требования к квалификации персонала

Для использования программного продукта не требуется иметь какое-либо образование или квалификацию.

4.1.4 Требования к показателям назначения

Целевое назначение системы должно сохраняться на протяжении всего необходимого срока эксплуатации программного продукта ПОУ Нижневартовский УЦ РО ДОСААФ России ХМАО-Югры.

Прочие показатели назначения программного продукта разрабатываются после проведения предпроектного обследования.

4.1.5 Требования к надежности

Время восстановления работоспособности программного продукта при любых сбоях и отказах не должно превышать одного рабочего дня, исключая случаи неисправности серверного оборудования.

Другие значения показателей надежности должны быть определены после проведения предпроектного обследования.

4.1.6 Требования к безопасности

Система должна обладать современными средствами защиты информации от SQL инъекций, подбора пароля, расшифровки токена сессии, а также проверка пользователей на права доступа при запросе данных. Остальные требования на безопасность накладываются на системного и сетевого администратора сервиса.

4.1.7 Требования по эргономике и технической эстетике

Система должна обладать приятной графикой, интуитивно понятным интерфейсом. Также она не должна вводить в заблуждение пользователя. Любой объект должен иметь описание.

4.1.8 Требования к эксплуатации, техническому обслуживанию, ремонту и хранению

Для эксплуатации разрабатываемого программного продукта необходимы следующие условия:

— сеть на усмотрение заказчика;

- электропитание технических средств на усмотрение заказчика;
- физическая защита аппаратных компонентов системы на усмотрение заказчика;
- создаваемая система должна иметь возможность обслуживания и выполнения ремонтно-профилактических работ, а также работ по администрированию системы и технической поддержке пользователей силами штатных специалистов, или присутствующих в субъектах РФ специализированных организаций.
 - 4.1.9 Требования к защите информации от несанкционированного доступа

Разрабатываемая система должна обеспечивать разграничение доступа на уровне отдельных программных модулей и структур данных.

4.1.10 Требования к сохранности информации

На основе данных хранимых в базе данных сервиса, должно производиться создание бэкапа или снапшота, интервалом каждые 3 дня с момента запуска сервиса.

4.1.11 Требования к средствам защиты от внешних воздействий

Серверы системы должны находиться на усмотрение заказчика.

4.1.12 Требования к патентной чистоте

Выбор программного и аппаратного обеспечения происходит на усмотрение заказчика с учетом мнения разработчика.

4.1.13 Требования к стандартизации и унификации

В процессе разработки должны быть использованы унифицированные формы документов, не общероссийские, а международные классификаторы и стандарты. Данный документ будет адаптирован под международный формат IEEE STD 830-1998.

5 СОСТАВ И СОДЕРЖАНИЕ РАБОТ ПО СОЗДАНИЮ (РАЗВИТИЮ) СИ-СТЕМЫ

Состав, содержание работ и сроки выполнения стадий приведены в следующем календарном плане:

- анализ существующих потребностей Заказчика в области автоматизации;
- совместная разработка с Заказчиком технического задания на разработку программного продукта;
- разработка, программирование и отладка прототипа программного продукта;
- опытная эксплуатация прототипа программного продукта с ограниченной функциональностью;
 - предложение о создании полнофункциональной версии системы.

Перечень организаций-исполнителей работ

Согласно данному техническому заданию будет производиться на усмотрение исполнителя в рамках указанных сроков, конечные сроки могут изменяться по мере дополнения функционала.

6 ПОРЯДОК КОНТРОЛЯ И ПРИЕМКИ СИСТЕМЫ

Стадии работ над проектом выполняются в соответствии с данным техническим заданием и происходит в один этап — интеграция готового программного продукта на производство, в сроки, указанные в данном техническом задании.

7 ТРЕБОВАНИЯ К СОСТАВУ И СОДЕРЖАНИЮ РАБОТ ПО ПОДГОТОВ-КЕ ОБЪЕКТА АВТОМАТИЗАЦИИ К ВВОДУ СИСТЕМЫ В ДЕЙСТВИЕ

Для подготовки объекта автоматизации к вводу в действие итоговой версии программного продукта необходимо провести следующие работы:

- утвердить список функциональных возможностей системы используемых при работе программного продукта;
- утвердить список схем документов, определяющих взаимодействие при работе программного продукта;
- утвердить список регламентов и деталей реализуемых деловых процессов при эксплуатации программного продукта;
- определить должностные инструкции обслуживающего персонала программного продукта;
- провести опытную эксплуатацию программного продукта с отработкой процессов, указанных в программе и методике испытаний.

Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу в действие программного продукта, включая перечень основных мероприятий и их исполнителей должны быть уточнены на стадии пилотных работ, подготовки рабочей документации и по результатам опытной эксплуатации.

Обеспечение работ по подготовке объекта автоматизации осуществляет Заказчик.

На последующих этапах реализации проекта указанные документы должны быть уточнены и откорректированы. При выполнении работ по программированию модулей и подготовке системы к эксплуатации должны быть подготовлены программные и эксплуатационные документы, обеспечивающие внедрение и эксплуатацию системы.

8 ТРЕБОВАНИЯ К ДОКУМЕНТАЦИИ

Отчётная документация должна передаваться Заказчику в бумажном и электронном виде (флеш-накопителе) на русском языке. Вспомогательная документация (не указанная в качестве непосредственного результата работ) передаётся только в электронном виде.

Техническая и эксплуатационная документация на Систему (далее – документы на Систему) должна удовлетворять требованиям комплекса стандартов и руководящих документов на автоматизированные системы:

ГОСТ 34.003-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Термины и определения» – в части терминологии;

ГОСТ 34.602-89 «Информационная технология. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы» – в части состава, содержания и правил оформления документов «Техническое задание», «Частное техническое задание».

Документам на Систему должны в обязательном порядке присваиваться уникальные децимальные номера в соответствии с порядком, установленном в:

ГОСТ 34.201-89 «Информационная технология. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем».

ПРИЛОЖЕНИЕ Б. СХЕМА БАЗЫ ДАННЫХ

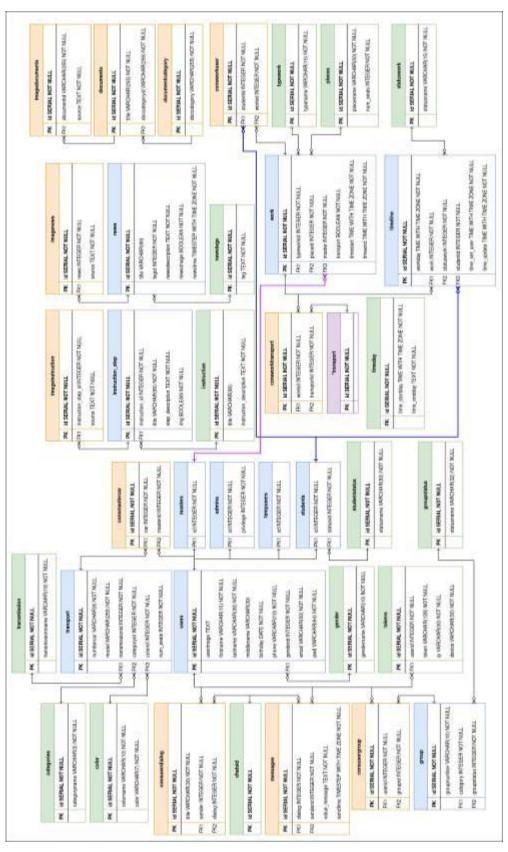


Рисунок Б.1 – Схема базы данных

ПРИЛОЖЕНИЕ В. КОМПАКТ ДИСК CD-RW

Содержание:

- 1. 2021_422_popovaai.pdf
- 2. 2021_422_popovaai_1.doc
- 3. 2021_422_popovaai.doc
- 4. 2021_422_popovaai_2.doc