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The article presents a review of the work of the Chelyabinsk mathematical school on
Sobolev type equations in studying the optimal control problems for linear Sobolev type
models with initial Cauchy (Showalter—Sidorov) conditions or initial-final conditions. To
identify the nonemptiness of the set of feasible solutions to the control problem we use the
phase space method, which has already proved itself in solving Sobolev type equations. The
method reduces the singular equation to a regular one defined on some subspace of the
original space and applies the theory of degenerate (semi)groups of operators to the case of
relatively bounded, sectorial and radial operators. Here mathematical models are reduced
to initial (initial-final) problems for an abstract Sobolev type equation. Abstract results are
applied to the study of control problems for the Barenblatt—Zheltov—Kochina mathematical
model, which describes fluid filtration in a fractured-porous medium, the Hoff model on a
graph simulating the dynamics of I-beam bulging in a construction, and the Boussinesq—
Love model describing longitudinal vibrations in a thin elastic rod, taking into account
inertia and under external load, or the propagation of waves in shallow water.
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Introduction

The research of the control problems for mathematical models based on Sobolev type
equations is relevant due to the need to study important applied problems, in particular, in
the theory of filtration, elasticity, biology and others. When studying mathematical models,
it is important not only to understand the properties of the processes being studied, but
also to be able to find the optimal regulation (external influence), with the help of which the
state of the system takes the required value. The article describes methods and approaches
developed in the framework of the scientific direction headed by G.A. Sviridyuk to study
the optimal control problems for linear Sobolev type mathematical models with classical
and non-classical initial (initial-final) conditions. A wide class of such mathematical models
has been studied based on the theory of Sobolev type equations. Consider some of them.

The Barenblatt-Zheltov-Kochina model. Let €2 C R™ be a bounded domain with a
boundary 92 of the class C*°. In the cylinder 2 x R, consider the Dirichlet boundary
condition

x(s,t) =0, (s,t) € 02 xR (1)

for the Barenblatt—Zheltov—Kochina equation [1]
AN=A)t =aAx+u (2)
Bectauk FOYpI'Y. Cepus <«MaremaTndeckoe MOAeJIMPOBaHUE 5

u nporpammupoBanues> (Becruuk FIOYpI'Y MMII). 2020. T. 13, Ne 1. C. 5-27



A.A. Zamyshlyaeva, N.A. Manakova, O.N. Tsyplenkova

that simulates the process of fluid filtration in a fractured porous medium. Here o, A € R
characterize the properties of the medium; parameter o € R, , and parameter A can take
negative values that do not contradict the physical meaning of the problem, the function
u = u(s,t) plays the role of an external exposure (i.e. characterizes the sources (drains)
of the fluid). A mathematical model based on equation (2), supplemented by classical or
non-classical initial (initial-final) conditions, was studied in various aspects in [2-4].

Mathematical model of an I-beam bugling. Let G = G(0; €) be a finite connected
oriented graph, where ¥ = {V;} is a set of vertices, and € = {E;} is a set of edges.
Each edge E; has the length [; € R, and the cross section area d; € R,. In each vertice
Vi, i =1, M, of the graph G consider the continuity conditions

z;(0,t) = 24(0,t) = Ty (L, t) = (10, 1), (3)

where E;, B, € E*(V;), E,, E, € E“(V;) (E“@)(V}) denotes the set of edges with the
beginning (end) at the vertex V;), and flow balance condition

> iz (0,0) = > diwg(li 1) = 0 (4)
)

E;eEx(V; EyeE“(V;)

for Hoff equations [5]
ATjp + Tjres = Q;T5 + Uy (5)

Conditions (3), (4) and equation (5) form the Hoff mathematical model on a graph
that describes the dynamics of deformation of an I-beam construction under constant
load A € Ry. Parameters a; € R characterize beam material properties; the free term
uj = u;j(s,t) corresponds to the external (lateral) load on the j-th edge of the graph.
Equations (5) on graphs were first studied in [6]. The Hoff mathematical model in the
domain or on the graph, supplemented by classical or non-classical initial (initial-final)
conditions in various aspects was studied in [7-9|.

The Boussinesq—Ldve model. Let @ C R™ be a bounded domain with a boundary 02
of the class C*°. In the cylinder € x R consider the Boussinesq-Love equation [10]

A=Az =LA =Nz +u (6)

with boundary condition (1). Model (1), (6) describes the propagation of waves in shallow
water. Parameters 3, A\, ' relate to depth, gravitational constant and Bond number. The
function x(¢,s) determines the wave height at time ¢ at the point s, u(¢,s) is a control
that defines external forces. The Boussinesq—Love mathematical model, supplemented by
classical or non-classical initial (initial-final) conditions, was studied in various aspects
in [10,11].

The Dzektzer model. Let 2 C R™ be a bounded domain with a boundary 0f2 of the
class C'*°. In the cylinder €2 x R consider the problem

x(s,t) = Ax(s,t) =0, (s,t) € 00 x R, (7)
for a non-classical partial differential equation [12]

(A — A)i = aAzx — BA%z + u. (8)
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The mathematical model (7), (8) describes the evolution of the free surface of the filtered
fluid. Here o, 8 € Ry, A € R are the parameters characterizing the fluid, the free term
u = u(s,t) characterizes the sources (drains) of the fluid. Mathematical model based on
equation (8), supplemented by classical or non-classical initial (initial-final) conditions in
various aspects was studied in 13, 14].

The Chen—Gurtin model with complex coefficients. Let 2 C R™ be a bounded domain
with a boundary 0f2 of class C**°. In the cylinder 2 x R, consider the boundary value
problem (7) for a non-classical partial differential equation [15]

(A — Az, = vAz — idA*r + u. 9)

Here the coefficients v, \,d € R characterize parameters of the system. The required
complex-valued function x(s,t) describes the dynamics of the process, and the complex-
valued function u(s,t) describes an external effect on the system. In the special case of
d = 0 equation (9) describes the process of heat conduction with “two temperatures” [15],
as well as the dynamics of fluid pressure in a cracks-porous medium [1]. A mathematical
model based on equation (9), supplemented by classical non-classical initial (initial-final)
conditions in various aspects was studied in [16,17].

The mathematical models under consideration belong to a wide class of Sobolev
type models (i.e., models based on Sobolev type equations). Sobolev type equations
currently constitute a significant part of the non-classical equations of mathematical
physics. Initially, such equations arose in the works of A. Poincare, C. Rossby, J. Boussinesq
and other mechanics in the late XIX — early XX centuries. However, a systematic study
of such equations began in the middle of the last century with the work of S.L. Sobolev.
A detailed history of this issue can be found in the monograph [18]. Note that various
terms are used in literature to denote such equations [18-20]. The term “Sobolev type
equations” [3,21] first appeared in the works of R.E. Showalter [22]. We adhere to this
term, considering the rest as synonyms.

The mentioned mathematical models with one or another initial (initial-final)
conditions in suitable Banach spaces can be reduced to the corresponding problems for a
linear Sobolev type equation

Az™ = Bx +y + Cu, (10)

where operators A € L(X;9), B € CI(X;), C € L(4;9), functions v : T — 4,
y: I —=Y (T CR), and X,9),4 are Hilbert spaces. To select the unique process under
study, the mathematical models under consideration and their abstract interpretation
(10) are supplemented by one of the following conditions:

— the Cauchy condition [3]

2™ (0) = 2, m=0,...n— 1, (11)
— the Showalter—Sidorov condition [23,24]
P (2"(0) = 2,,) =0, m=0,....,n — 1, (12)
— the initial-final condition [4,25]

P (2™(0) — 2%) = 0, Py (2™ (1) —2])) =0, m=0,..,n—1, (13)
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where P, P;,, Py, are some spectral projectors in the space X, which will be defined later.
Condition (13) differs from the initial conditions in that one projection of the solution is
specified at the initial moment of time, and the other is set at the final moment of the
considered time interval. The initial-final condition is a generalization of the Showalter—
Sidorov condition, which in turn is a generalization of the classical Cauchy condition. As it
is well known (see, for example, [23]), the Cauchy problem for the Sobolev type equation
(10) (in case ker A # {0}) is not solvable for arbitrary initial values z,,, m = 0,n — 1. To
overcome this difficulty, G.A. Sviridyuk proposed the phase space method. The foundations
of this concept were laid down in [20], then the concept was developed in [3] and many
other works. Another approach to overcome the difficulties associated with non-existence
of the solution to (10), (11) is to consider the initial Showalter—Sidorov condition (12)
and a more general initial-final condition (13) instead of the initial Cauchy condition (11).
We are interested in solving the optimal control problem, which consists in finding a pair
(%, ), for which the relation

J(z,0) = (m,u?el;giuad J(z,u) (14)
holds. Here the pairs (z, u) satisfy the Cauchy problem (10), (11) or the Showalter—Sidorov
problem (10), (12), or the initial-final problem (10), (13) and J(x,u) is some specially
constructed quality functional, .4 is some closed and convex set in the control space 4.

The article provides an overview of the results developed in the framework of the
direction headed by G.A. Sviridyuk on the optimal control of the solutions to the initial-
final problem and, in particular, the Showalter—Sidorov and Cauchy problems for linear
Sobolev type equations. The first who began to study the controllability problems and the
optimal control problem for linear Sobolev type equations with the Cauchy condition were
G.A. Sviridyuk and A.A. Efremov [2,13,26|. In these papers, the optimal control problem
with a quadratic quality functional was studied in case n = 1 with (A, p)-bounded or (A, p)-
sectorial operator B and the Cauchy condition, the necessary and sufficient conditions
for the existence and uniqueness of a solution were obtained. G.A. Sviridyuk suggested
moving from considering the classical solution z € C'(J; X) of (10), (11) to the strong
solution x € HPT(X) of this problem, which allowed to set the optimal control problem
(10), (11), (14) and to use the technique of Hilbert spaces for its research. These studies
formed the basis of a number of works by G.A. Sviridyuk’s disciples and followers on the
study of optimal control problems for linear Sobolev type equations based on the theory
of degenerate resolving (semi)groups of operators [3]. Since [2,3,13|, when considering the
classical Cauchy condition, due to the degeneracy of the equation, it was necessary to
reconcile the initial data with the control action, then G.A. Sviridyuk suggested an idea
to use more general initial Showalter—Sidorov condition (initial-final condition), which
made it possible to remove the restriction on the set of optimal controls in the subsequent
works of his disciples and followers and opened the way to a whole class of problems
on this subject [8,27]. In [10] the necessary and sufficient conditions for the existence
and uniqueness of the solution of optimal control problems for high-order Sobolev type
equations with an initial-final condition were obtained. The ideas and methods developed
by G.A. Sviridyuk and A.A. Efremov on controllability of linear abstract Sobolev type
equation opened the way to the study of more general controllability problems [28§].

The article consists of introduction, 6 sections and conclusion. The first Section gives
the main points of the theory of relatively bounded operators, the complete proofs of
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which can be found in [3]. It contains theorems on existence and uniqueness of classical
solution of optimal control problems for an abstract Sobolev type equations, as well as on
existence and uniqueness of strong solution to the initial (initial-final) problem for such
equations. In the second Section, the abstract results are applied to specific Sobolev type
models, namely, the Barenblatt—Zheltovaya—Kochina model, the Hoff model on the graph,
and the Boussinesq-Love model. The third Section contains the results of the theory
regarding relatively sectorial operators for the first-order Sobolev type equation. In the
fourth Section, the Dzektzer model and the pressure evolution model on the graph are
reduced to an abstract Sobolev type equation with initial (initial-final) conditions, and
then the abstract results are applied to the study of optimal control problem for them.
The fifth Section contains the main results of the theory with relatively radial operators.
The optimal control in the Chen—Gurtin model based on the Sobolev type equation with
a relatively radial operator is studied in the sixth Section.

1. Relatively p-Bounded Operators.
Strong Solutions. Optimal Control
In this section definitions and results of the theory of relatively bounded operators

are given [3,29]. Let X, 2 and 4 be Banach spaces. Operators A, B € L(X;9)), operator
C € L(14;9). The set

p*(B) ={peC: (uA—B)™" € L(V; X)}

is called a resolvent set of operator B with respect to operator A (an A-resolvent set of the
operator B). The set C\p?(B) = o(B) is called a spectrum of operator B with respect
to operator A (an A-spectrum of operator B). The operator function

pA—B)"', RA=(uA—B)'A, L= A(uA—B)7!
M w

of a complex variable with domain p?(B) is called a resolvent, a right resolvent, a left
resolvent of operator B with respect to operator A (an A-resolvent, a right A-resolvent, a
left A-resolvent of operator B).

Definition 1. The operator B is called polynomially bounded with respect to operator A
(or simply (A, 0)-bounded), if

Ja>0VueC: (Jjul >a) = (uep?(B)).
Lemma 1. [29] If the operator B is (A,o)-bounded, then the following operators

1 A n—1 1 n—1 A
P [ BAEBW Adn Q= o [ AR (B

2 27
T T

are projectors, moreover P: X — X and Q : ) — . Here T ={\ € C: |\"| =r > a}.

Set X0 =ker P, 9° = ker Q, X' = im P, 9' = im Q. By A; denote the restriction of
the operator A, and by By, denote the restriction of the operator B to X*, k = 0,1. The
theorem of operator actions’ splitting is true.
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Theorem 1. [3, Ch. 4| Let the operator B be (A, o)-bounded. Then
(i) operators Ay, By : X¥ = 9k k=0, 1;
(ii) there exists an operator By' € L(P°, X0);
(iii) there exists an operator A7' € L(P',XY);
(iv) operator By € L(X', D).

Let us construct the operators H = Byt Ay € £(X°) and S = A;'B; € £(X!). Then

(uA—-B)™" = (— ZukH"’> By'I—Q)+ Y uts*lAtQ. (15)
k=0 k=1

Definition 2. The point oo is called:

(i) a removable singular point of the A-resolvent of the operator B, if H = O

(ii) a pole of order p of the A-resolvent of the operator B, if H? # O, HP*! = Q,
peN;

(7ii) an essentially singular point of the A-resolvent of the operator B, if H1 # Q,
Vq € N.

Definition 3. (A, o)-bounded operator B is called (A, p)-bounded for some p € {0} UN,
if the point oo is a pole of order p € {0} UN of the A-resolvent of operator B.

Definition 4. The vector-function z € C™*"(R;X), n € N, satisfying (10) is called a
classical solution of this equation.

Consider linear homogeneous (y = u = 0) Sobolev type equation (10).

Definition 5. The operator-function V* € C(R;L(X)) is called a propagator of
homogeneous equation (10), if for arbitrary v € X the wvector-function z(t) = V'v is
the solution of this equation.

Theorem 2. [29] If the operator B is (A, o)-bounded, then formulas

X! = pm N " A — B) P Aettdp, m = 0,n — 1,

1
21

S—

define propagators of a homogeneous equation (10) for t € R.

Consider the inhomogeneous equation

Az = Bx +y (16)
and sets
m - -1 dnq-i—m
MP={zeX:(I-Pz= —Z;HqBO T I = Q(O)}, m =0 =T (17)
=

The results on existence and uniqueness of a classical solution to (11), (16) were
obtained in [10,29].

Theorem 3. (29| Let the operator B be (A, p)-bounded for some p € {0} UN, the function
y:J = (T CR) be such that y° = (I — Q)y € C""*"(F;Y°) and y' = Qy € C(T;P").

10 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2020, vol. 13, no. 1, pp. 527



OB30OPHBIE CTATBHI

Let the initial values x,, € M7, m = 0,n — 1. Then there exists a unique classical solution
to the Cauchy problem (11), (16) given by

P t

z(t) = — ZHqB NI — (q” )+ Z X! v+ /sz__slAl_le(s)ds, ted. (18)

q=0 0

There were obtained results [10] on the existence and uniqueness of a classical
solution to problem (12), (16). Note that when using the Showalter—Sidorov condition, the
assumptions of Theorem 3 can be weakened without requiring initial data being agreed
with the right side of equation (16).

Theorem 4. [29]| Let the operator B be (A, p)-bounded for some p € {0}UN, the function
y: T = be such that y° = (I — Q)y € C™(3;9°) and y* = Qy € C(T3;Y'). Then
for arbitrary x,, € X, m = 0,n — 1, there exists a unique classical solution to Showalter—
Sidorov problem (12), (16) given by (18).

Proceed to consider a more general than the Showalter—Sidorov initial-final condition.
Introduce an additional condition

04(B) = 03 (B)Uoi(B),0i!(B) # 0,k =0, T;
and contour 7, is the boundary of domain D C C such that (B)
DNod(B) =oi(B),DNo(B) =0.

Then there exists an operator

Pin = 5— Ri.(B)W' ' Adp € L(X).

Yo
Lemma 2. [29] Let the operator B be (A, p)-bounded for some p € {0} UN, let condition
(B) be satisfied. Then Py, is a projector, and Py, P = PPy, = Ppip.

Construct an operator P, = P— Py, € L(X). By Lemma 2 operator P, is a projector.
Consider operators

1
2m

/RA(E)(M”_W_IA — B)etdp.

Y0

Xfin(t) =

Note that XJ;, is a propagator of homogeneous (y = 0) equation (16). Introduce a family
of operators

Theorem 5. [29] Let the operator B be (A, p)-bounded for some p € {0}UN. Let the vector
function y : I — Q) be such that y° = (I — Q)y € Ct(3:9°%) and y* = Qy € C(3; D).
Then for arbitrary x°,, x7 E X, m = 0,n—1, there exists a unique classical solution to

problem (13), (16), fort € J given by

2(t) = — 3° HY(By) " (I Q)y"d(¢) + Z in (8) Piny, + Z X75n () Priny,+ »
=9 19
+fX” Yt — s) A7 Pry(s)ds — fX;}ml(t — 8) AT Priny(s)ds.
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Thus, a general theory that allows one to find classical solutions for (16) with initial
(initial-final) conditions is constructed. Now turn to the study of control problems. It
should be noted that in such problems the technique of Hilbert spaces is traditionally
used, which requires consideration of other types of solutions. Further we consider X, 2
and Y being Hilbert spaces. Consider space H*(9)) = {v € Ly(0,7;9) : v® € Ly(0,7;)}.
The space H*(2)) is Hilbert with inner product

k T
[v,w] = Z/<v(q),w(‘1)>m dt.
q=0 0

Definition 6. The vector-function v € H™(X) = {x € Ly(3; %) : 2™ € Ly(3;X)} is
called a strong solution to (16), if it turns the equation to an identity almost everywhere
on interval 3. A strong solution x = x(t) of (16) is called a strong solution of the Cauchy
problem, if condition (11) holds; a strong solution of the Showalter—Sidorov problem, if
condition (12) holds; a strong solution of the initial-final problem, if condition (13) holds.

Note that classical solution (18) is also a strong solution to equation (16) by virtue of
the continuity of the embedding H"(X) < C"~(J; X).

Theorem 6. [30] Let the operator B be (A, p)-bounded for some p € {0} UN. Then for
arbitrary y € H"™*™™(Q)), x,, € M m = 0,n — 1, there exists a unique strong solution to
the Cauchy problem (11), (16).

Theorem 7. [31] Let the operator B be (A, p)-bounded for some p € {0} UN. Then

for arbitrary 2° 27 € X,m = 0,n—1, and y € H™T(Q)) there exists a unique strong

m’'m

solution to the initial-final problem (13), (16).

Note that in the case of (0f), = 0*(B), 0, = 0) the Showalter-Sidorov problem can
be considered as a special case of the initial-final problem. The following result follows
from Theorem 7.

Corollary 1. Let the operator B be (A,p)-bounded for some p € {0} UN. Then for
arbitrary x,, € X,m = 0,n— 1, and y € H"™™(Q)) there exists a unique strong solution
to the Showalter—Sidorov problem (12), (16).

Definition 7. The pair (Z,4) is called a solution to the optimal control problem (10),
(11), (14) if relation (14) is satisfied and all pairs (x,u) € H™P(X) x Uyq are solutions
of problem (10), (11). A wvector function G € g is called an optimal control of solutions
to (10), (11).

Consider the penalty functional

np+n 7

J(z,u) = MZ/ |2@ — 79D ||2dt 4 v Z /<Nqu(‘n,u(q>>udt. (20)
q=0 0 q=0 0

Here p,v > 0, p+v =1, N, € L(U), ¢ = 0, 1, ..., np + n, are self-adjoint positively
defined operators, and Z(t) is the target state of the system.
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Remark 1. By Theorem 7 on the existence of a unique solution for all y € H"™™(9))
and u € 4 the solution z = z(u). Therefore, the quality functional depends only on w :
J(z,u) = J(u). Thus, the set of feasible solutions to problem (10), (11), (14) is not empty.

When using the Cauchy condition, we pass to consideration of the subspace of controls

o Np+n

H () ={u € Ly(0,7; ) : wPtn) ¢ LQ(O,T;ﬂ),u(Q)(O) =0,q= W}

o np+n o np+n
In the space H (Y1) we single out a closed convex subset $, C H (), which will

be called the set of admissible controls. Results on existence and uniqueness of optimal
control of solutions to the Cauchy problem (10), (11) were obtained in [30].

Theorem 8. [30]| If the operator B is (A, p)-bounded for some p € {0} UN, then for
arbitrary y € H™(Q) and z,, € M, m = 0,n—1, there exists a unique optimal
control of solutions to problem (10), (11).

Introduce the control space H™*"(4l). Single out a closed convex subset U,y C
H™*™(§(). Results on existence and uniqueness of optimal control of solutions to initial-
final problem (10), (13) were obtained in [31].

Theorem 9. [31] If the operator B is (A,p)-bounded for some p € {0} UN, then for
arbitrary y € H™() and 2°,27 € X, m = 0,n — 1, there exists a unique optimal

control of solutions to the initial-final problem (10), (13).

The following result follows from Theorem 9.

Corollary 2. If the operator B is (A, p)-bounded for some p € {0} UN, then for arbitrary
Tm €X,m=0,n—1, andy € H"™™(Q)) there exists a unique optimal control to solutions
of the Showalter—Sidorov problem (10), (12).

2. Optimal Control in Sobolev Type Models
with Relatively p-Bounded Operators

Optimal control in the Barenblatt—Zheltov—Kochina model. Consider the optimal
control problem (14) for mathematical model (1), (2) with the initial Cauchy condition
(11). Reduce this problem to equation (10) with n = 1. For this purpose put

X = BAQN H (Q), 9 = Ly(Q), 8= Lo(Q). (21)

and by formulas
A=XN-A, B=caA, C=I, (22)

define the operators A, B € L(X,2). Denote by {¢x} the set of eigenfunctions of the
Dirichlet problem for the Laplace operator A, numbered in ascending order of eigenvalues
{A\x} taking into account their multiplicity. Consider the A-resolvent of operator B in the

form
o0

(nA—B)™ :;W ﬁ’fjif’“mk, (23)
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where (-, -) is an inner product in Ly(£2). Hence, the A-spectrum of operator B is given by

Oé)\k

o (B) = {,Uk = A\ # )\k}. (24)

Lemma 3. [3| The operator B defined by (22) is (A, 0)-bounded for any \ € R.

Let the function y € H*(Q). Then the set M, (given by (18) for n = 1) takes the
form

M, ={zx e X: —da(z,or) = (Y(0), pr), \e = A}

and the control space

H (4) = {u € Ly(0,7;80) : 4 € Ly(0, 7;44), u(0) = 0} .
Choose a closed convex subset i,, in it.

Theorem 10. [2] For any y € H () and xo € M, there exists a unique solution (&,4) €
HY(X) x Uyq to the optimal control problem (14) for mathematical model (1), (2) with the
initial Cauchy condition (11), that minimizes functional (20).

Remark 2. The vector function & € H'(X) defines the desired distribution of pressure in
2, and the control @ means the effect on pressure by increasing (decreasing) the influence
of liquid sources (drains) in 2.

Optimal control in the Hoff model on a graph. Consider the optimal control problem
for mathematical model (3) — (5) with initial-final condition (13) in the case of n = 1.
Reduce the problem to equation (10) with n = 1. Introduce the Hilbert space Ly(G) =
{u=(u1,u,...,uj,...) 1 u; € Ly(0,1;)} with inner product

lj

(u,v) = Z dj/ujvjds,

Ejee 0
and Banach space X = {z = (21,29, ..., 2}, ...) : z; € H'(0,1;) and (3) holds } with norm

lj

a2 = 3 4 / (22, + a2)ds.

Ejee 0
Denote by 9) the conjugate space to X with respect to the duality (-,-) and by formula

lj

(Lz,v) = — Z d; /xjsvjsds, r,v € X (25)

Ejee 0

define the operator L € L£(X;2). It was shown [32] that o(L) is negative, discrete,
with finite multiplicity, and condenses only to —oo. Number the eigenvalues {vy}
of the operator L in nonincreasing order, taking into account multiplicity. Then the
orthonormal (in the sense of §)) family of corresponding eigenfunctions {1} of operator L
forms the basis in X.
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For A € R, construct the operator A = A+ L. By construction operator A € L(X;9)),
and its spectrum o(A) = {A+vy}. Define the operator B by formula B = al, where a € R,
and C' = I. Thus, we reduced problem (3) — (5) to equation (10). Construct the relative
spectrum of the operator B

UA(B):{uk:%jyk:kEN\{l:/\%—yk:O}}.

Lemma 4. [6] The operator B is (A, 0)-bounded if one of the following conditions holds:
(1) ker A = {0}, X\ # v, Vk € N;
(11) ker A # {0}, o; # 0 for any j.

Further, consider the initial-final problem for mathematical model (3) — (5). Represent
the A-spectrum of operator B in the form

o4(B) = 07,(B) U 0}y, (B), 07, (B) N 05, (B) = 0.
Then the initial-final condition (13) takes the form

> ((@(0) = o), v) tn = 0, Z ((2(7) = 27), ) Y1 = 0. (26)

pi€oil (B) pk€ot, (B)

fin

Introduce the control space
HY(80) = {u = (uy,ug, ...uj, ...) : 45 € La(0,75(0,1;))},

and choose a closed convex subset il,; in it. Construct the operators

(Nu®, ”’)—Zd/%jq @y

Ejee |

where sz, are positive numbers.

Theorem 11. [8] For anyy € H'(Q) and X € Ry, a; € R, satisfying condition (i) or (ii)
of Lemma 4, for arbitrary xy, z, € X there exists a unique solution (Z,1) € HY(X) x Uyq of
optimal control problem (14) for mathematical model (3) — (5) with initial-final conditions
(26), that minimizes functional (20).

Optimal control in the Boussinesq—Ldéve model. Consider the optimal control problem
for mathematical model (1), (6) with the initial Showalter—Sidorov condition (12). Reduce
the problem to equation (10) with n = 2. To do this, put

X={zc H™Q):2(s) =0,s €00}, 9=H(Q), U=H(Q), 1c{0}JUN.

The operators A, B € L(X;9)) are given by formulas A=\ —- A, B=3(A-\X), C =1L
Then the A-resolvent of operator B takes the form

2 - ©r) P
A—-B)” 27
(u P e u AN = A (21)
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where (-,-) is an inner product in L9(2), A, ¢k are the same as in Barenblatt—Zheltov—
Kochina model. Then for the A-spectrum of operator B we get

oA(B) = {uz =AM Ak}. (28)

Lemma 5. [10] The operator B is (A,0)-bounded.

Construct the projector:

I if A o A
p= .
I— Z <790k:> Pk if Ak: =\
A=A

The Showalter—Sidorov condition (12) is given by

Z < 0k, x(5,0) — xo(s) > ¢ =0, Z < g, x(8,0) —x1(s) > . =0.  (29)
M A

Let us proceed to the optimal control problem. Introduce the control space
H?*(U) = {u € Ly(0,7;4) : it € Ly(0, 7540}

In the space H?(4l) single out a closed convex subset 1,4, which will be the set of admissible
controls.

Theorem 12. [10] For any o, € R\ {0}, A € R, and 7 € R, ,x,, € X,m = 0,1, there
exists a unique solution (%,4) € H*(X) X Hyq to the optimal control problem (14) for the

Boussinesq—Love model (1), (6) with the Showalter—Sidorov condition (29), that minimizes
functional (20).

3. Relatively p-Sectorial Operators

In this section, definitions and results of the theory of relatively sectorial operators
are given |3, Ch. 3|. Let X,%2), 4 be Banach spaces, operators A € L(X;92)), B € Cl(X;9),
C € L(1;9), functions y : (0,7) C Ry — Y (7 < 00) to be determined later. Let further
ur € p2(B), k=0,1,...,p. Operator-functions

P P
A A A A
Rip) = H R, (B), L(u,p)(B) - H Ly, (B)
k=0 k=0

are called, respectively, a right and a left (A, p)-resolvents of operator B.

Definition 8. (3, Ch. 3| The operator B is called p-sectorial with respect to the operator
A with the number p € {0} UN (or simply (A, p)-sectorial for some p € {0} UN) if
(i) there are constants a € R and © € (3, 7) such that

S26(B) = {n € C: |arg(u—a)| < O, # a} C pA(B),
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(i1) there is a constant K € R,y such that

K

nlax{\]R@p)(B)Hc(x)a HL&,p)(B)HE(@)} N
[T g — al
q=0

for any pg € SPo(B), ¢=0,1,...,p.

Let the operator B be (A, p)-sectorial for some p € {0} UN, then there are degenerate
analytic semigroups of operators (see |3, Ch. 3|)

1 1
t A i t A i
X' = 3 R (B)e"dp and Y' = - L (B)e"dpu,
r T

where t € R, and the contour I' C S(f@(B) is such that |argu| — O for p — oo, p € T,
© € (3, 7). Denote by X* = {X": ¢t € R.}. Put X° = ker X*, X' = imX*, 9° = ker Y,
P! = imY* and denote by Ay, the restriction of operator A to X*, and by By, the restriction
of operator B to X* Ndom B, k =0, 1.

There are two approaches to splitting of spaces X and g). The first approach is outlined
in [3|, where a stronger condition on operator B (strong (A, p)-sectoriality of operator B)
is set. We follow the equivalent approach firstly proposed by G.A. Sviridyuk. Further, we
need two conditions:

Xox'=%and 9°09' =9, (A1)
there exists an operator A;' € L(P'; Xh). (A2)

The equivalence of these approaches was shown in [33]|. Note that condition (A1) occurs
when the operator B is strongly (A, p)-sectorial on the right (left). Condition (A2) is
met either when the operator B is strongly (A, p)-sectorial, or when it is (A, p)-sectorial,
(A1) holds and 9! = im A;. If conditions (A1), (A2) are satisfied and operator B is (A, p)

sectorial, then there are projectors P = s- lim X*, Q = s- lim Y, operators H = By ' A €
t—0+ t—0+

L(X%) and S = A'B; € CI(X'). Moreover, the operator H is nilpotent of degree p, and
the operator S is sectorial.
Further we consider the case n = 1 and equation (10) in the form

Ai = Bx +y. (30)

Proceed to the study of solvability of the Cauchy problem (11) for equation (30). Similarly
to Section 1 for the solvability of the Cauchy problem, it is necessary to construct a
condition connecting the initial value and y in the right-hand side of (30). Introduce the
set

p
My={zeXx: I-Px+> HB;'(I-Q)y"0) =0} (31)
q=0
The solvability of the Cauchy problem (11), (30) was studied in [3,13].

Theorem 13. [3,13| Let the operator B be (A, p)-sectorial for some p € {0}UN, conditions
(A1), (A2) be fulfilled and y° = (I - Q)y € CP([0,7];Y°) N CP*((0,7);V°), y' = Qy €
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C([0,7];DY). Then for any xg € M, there exists a unique classical solution to (11), (30)
given by

P t

2(t) = X' — S HUB; (I — Q)y') (1) + / Xty (s)ds. (32)

q=0 0

Proceed to more general initial-final condition (13) and the Showalter—Sidorov
condition (12). If we use these conditions, we can omit conditions on the initial value
xg, and take it from the whole space X. Suppose that conditions (A1), (B) are satisfied.
Construct a relatively spectral projectors [4]

1
LABd.
27”/ (B)dp

Y0 Yo

1 A
%/RH (B)dp,  Qpin =

It turns out that under (A, p)-sectorial for some p € {0} UN and conditions (A1), (B)
being fulfilled Pt;,, P = PPrip = Prin, Qin@ = QQ tin, = Qfin- S0 there exist projectors

Then 9" = im Qjy, @fm = 1im Qgp.

Theorem 14. [14] Let the operator B be (A, p)-sectorial for some p € {0} UN and
conditions (A1), (A2), (B) be satisfied. Then for any xo,x, € X and vector function y
such that y* = (I — Q)y € C7([0,71;9°) N CP*H((0,7);Y%), y™" = Qiny € C([0,7[;Y™),
Y™ = Qpiny € C([0,7];D7™) there exists a unique classical solution to (13), (30), given
by

x(t) = — Z H1By ' Lo0(t) + X, o +fo;syi”(s)ds+

9=

Xt T fzt Syfzn S,

fzn fzn
where
1 A t A t
thn = 2—7'('7/ /R;L (B)e“ d,LL - /RM (B)e“ dﬂ ,
r Yo
1
Zy= g | [ =B [ua-m ey )
1 r 701
Xt = RY(B)etdu,  Z}, = / A— B) teMdyp.
fin 27_” ( )6 H, fin 27TZ (:u ) e 2
v Yo

Corollary 3. Let the operator B be (A, p)-sectorial for some p € {0}UN, conditions (Al),
(A2) be fulfilled and y € CP((0,7); X) N CPT([0,7]; X). Then for any xo € X there exists a
unique classical solution to the Showalter—Sidorov problem (12), (30) given by (32).

Next, we consider the optimal control problem. Let now X, ) and 4 be Hilbert spaces.
Similarly to Section 1, consider strong solutions to

At = Bx +y+ Cu. (33)
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Definition 9. The vector-function v € HY(X) = {x € Ly(0,7;X) : @ € Ly(0,7;X)} is
called a strong solution to (33), if it turns the equation to an identity almost everywhere
on interval (0, 7). A strong solution x = x(t) of (33) is called

— a strong solution of the Cauchy problem if tli%i(x(t) — x9) = 0;

— a strong solution of the Showalter—Sidorov problem if tli%}r P(x(t) — zo) = 0;
—
— a strong solution of the initial-final problem z’ftlirorir P (z(t)—x0) = 0 and Ppip(x(T)—
%
z,) = 0.
Similarly to Section 1, there exists a unique strong solution to the Cauchy problem

(11), (30) [13]. This implies that the set of admissible pairs (x,u) is non-empty. When
using the Cauchy condition, we pass to the consideration of the subspace of controls

o p+1

H () ={ue Ly0,7;8) : u? € Ly(0,7;80),u9(0) =0,g=0,p+ 1},p € {0} UN.

o p+1 o p+1
In the space H () we single out a closed convex subset g C H  (41).

Theorem 15. [13| Let the operator B be (A,p)-sectorial for some p € {0} UN and
conditions (A1), (A2) be fulfilled. Then for any y € HPTY(), xg € M, there exists a
unique solution to the optimal control problem (11), (14), (33) with functional (20).

Proceed to consideration of more general initial-final condition (13) and the Showalter—
Sidorov condition (12). Introduce the control space

HPPHY) = {u € Ly(0,7;4) : @ e Ly(0, 7540, =0,p+ 1},p€ {0} UN
and select a closed convex subset $l,g C HPT1(4).

Theorem 16. [8] Let the operator B be (A, p)-sectorial for some p € {0}UN and conditions
(A1), (A2), (B) be fulfilled. Then for anyy € HP™Y(Q), xo, v, € X there exists a unique
solution to the optimal control problem (13), (14), (33) with functional (20).

Corollary 4. Let the operator B be (A, p)-sectorial for some p € {0} UN and conditions
(A1), (A2) be fulfilled. Then for any y € HPTY(Q)), xo € X there erists a unique solution
to the optimal control problem (12), (14), (33) with functional (20).

4. Optimal Control in Sobolev-Type Models
with Relatively p-Sectorial Operators

Optimal control in the Dzektzer model. Consider the Dzektser model (7), (8). For
reducing problem (7), (8) to equation (33), put

X={2e H(Q) 2(s)=0,s€0Q}, Y=uUu=H(Q), [=0,1,...,
and define the operators A, B by the formulas
A=XN—-A, B=aA-pA*+~I, C=L
Construct the set

domB = {z € H™™(Q) : Az(s) = 0,5 € 00} N X.
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By definition, the operator A € L£(X;%)), and the operator B € CI(X,2)). The relative
spectrum of the operator B is given by

al, — B2 +
o5 = {m= DI a2

where A\, ¢ are the same as in the Barenblatt—Zheltov-Kochina model.

Lemma 6. [13| For any o € Ry and 8,7, A € R such that either —\ ¢ o(A), or
=X € o(A) and —\ is not the root of the equation aa — fa* + v = 0, the operator M is
strongly (L, 0)-sectorial.

Consider the set

My ={z € X: (—aX+ BN — ) {z, o) = ((0), ), Ak = A},

where (-, -) is an inner product in Ly(Q2). Introduce the control space
HY () = {u € Ly(0,7;4) : i € Ly(0, 73 4),u(0) = 0}

and construct the penalty functional (20). Choose a closed and convex subset 4 C H (L0).

Theorem 17. [13| Let the conditions of Lemma 6 be satisfied. Then for any y € H' ()
and x € M, there exists a unique optimal control u € ,q of solutions to the Cauchy
problem (11) for the model (7), (8), minimizing functional (20).

Optimal control in the Dzektser model on the graph. Let G = G(U; €) be a finite
connected oriented graph, where U = {V;} is a set of vertices, and € = {E;} is a set of
edge, and each edges F; has the length [; € R, and the cross sectional area d; € R,. On
the graph G consider linear partial differential equations

)\xjt — Tjtss — ijss — QT jssss + Y4 + Uy (34>

We look for a solution to equation (34) on the graph G, satisfying the continuity conditions
(3) and flow balance condition (4).

Reduce the mathematical model (3), (4), (34) to equation (33). Let A € R and define
the operator A = A — L, where L is defined by (25) and the space X, ), il are the same as
in the Hoff model on a graph. By construction the operator A € £(X;9)), and its spectrum
0(A) = {\ — v }. Consider the set

dom B={zx € X:x; € H*(0,l;) and
xjss(oyt) - ZEkSS(O,t) = xmss(lmu t) = xnss(lna t), Eju Ek: S Ea(‘/i)y Ema En S Ew(‘/;)v
Z djxjsss(ou t) - Z dkxksss(lku t) = O}

E;€B%(Vi) By E=(V;)

Further, the formula W : v — (Uissss, U2sssss - - -5 Ujsssss - - -) defines the operator
W € L(dom B;9) and o(W) = {v?}. Take 8,7,A € R and define an operator
B = —fW + aL+ 4L By construction B € CI(%;9). Let ¢*(B) = 0{,(B) U 0, (B),
om(B) N0y, (B) = 0. Then condition (13) takes the form

pr€oit (B) pr€ayt (B)
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where vy, ¥y, are the same as in the Hoff model on a graph. Thus, we reduced problem (3),
(4), (34), (35) to problem (13), (33).
Introduce the space

HY(80) = {u = (uy,ug, ...uj, ...) : 4; € Lo(0,75(0,1;))}.

Single out a closed convex subset i,y C H'(4l). Construct the operators

(Nu®, ”’)—Zd/%jq @25

Ejee
where sz, are positive numbers.

Theorem 18. Let the conditions of Lemma 6 be satisfied. Then for any T € Ry, g, 2, € X

there exists a unique optimal control u € Uyq of solutions to the initial-final problem (35)
for the model (3), (4), (34), minimizing functional (20).

5. Relatively p-Radial Operators

In this section, definitions and results of the theory of relatively radial operators
are given [3, Ch. 2|. Let X,2),4 be Banach spaces, and the operators A € L(X;9),
B e Cl(%;9), C € L(P; Y).

Definition 10. The operator B is called p-radial for some p € {0} UN, with respect to
operator A ((A, p)-radial), if

(i) Ja€ RVu > a p € p*(B);

(ii) 3K > 0 Yu = (po, pia, - - - f1p) € (a,+00)PT ¥ne N

n n K
max{| (R, ) (B)"llcco | (LG (B) " lean} < :
f10u - ar

Whereof, we assume that the operator B is (A, p)-radial for some p € {0} UN. Put
X° =ker R, (B), 9° = ker L}, ,(B). By Ay denote the restriction of the operator A on

(1)
X%, and by B, denote the restriction of the operator B on X° N dom B.

Theorem 19. [3, Ch. 2| Let the operator B be (A, p)-radial for some p € {0} UN. Then
(i) the operator Ay € L(X°;Q°) and the operator By € CI(X°;°);
(ii) there exists the operator By* € L(Y°; X°);
(iii) the operator H = By' Ay € L(XP) is nilpotent with degree less than or equal to p.

Let X' be the closure of the lineal im Ry, ,(B), and 9" be the closure of the lineal
im LA

(o )(B). Let X be the closure of the lineal %O—i-imRap)(B) in the norm of the space
X, and 9) be the closure of the lineal 9)°+imLA ’p)(B) in the norm of the space 2). By A;

(n
denote the restriction of the operator A on X!, and by B; denote the restriction of the

operator B on X! NdomB5B.

Theorem 20. (3, Ch. 2| Let the operator B be (A, p)-radial for some p € {0} UN. Then
there exists a uniformly bounded and strongly continuous resolving semigroup of equation
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(30) on the subspace X () given by

s\t k 2 k
<Xt:s-hm_<(A———B) L) :s-hm,(—Rgun)
k—o0 k k—woo \ T %
;o\t k 2 k
V! =s-lim (A (A - —B) ) = s- lim (—L (B))

Similarly to Section 3, we introduce the conditions (Al), (A2), (B). Whereof, we
assume that conditions (A1), (B) are fulfilled, then construct projectors [4]
1 1

Py =— | RY(B n = L:(B)dp.
o= 5rr [ BB, Q= 5 [ L2B)

v v

EETeN

There exist projectors
Let }.‘m (imy = 1M Pin(pin) @Zln(fm) = IMQjn(fin)- BY Ain(sin) denote the restriction of the

operator A on subspace X! , by Bin(fin) denote the restriction of the operator B on

in(fin)’
in(finy 1 dom B. Similarly to Section 3 actions of the operators split, i.e. the

operator A, (yin) € E(%m(fm),@m(fm))' the operators A n(fin) € E(Qj Bin(riny €
CUX L finys Din(sin))s Xingriny) €Xist.

in(fin)

subspace X}

n(fin)’

Theorem 21. [16] Let the operator B be (A, p)-radial for some p € {0}UN and conditions
(A1), (A2), (B) be fulfilled. Then for all xy,z, € X and the vector function y : [0,7] — ),
such that yO = (]I - Q)y S Op+1([077—];@0)7 yiln = Quny € C(Wﬁ]?@%% yjl%'n = inny S
C([0,7);D}s,) there exists a unique classical solution x € C([0,7]; X) N C((0,7); X) of
(13), (30) given by

P t
dd
o(t) = =Y (By'Ao)"By ' ——y(t) + X[ a0 + / Ry Yin(8)ds + Xf v —
—~ dtd 0
- / Ryt (s)ds, (36)
where
1 ¢ -\ tp )
o 1 ut t . — —B. ; in — T Dj
Rjin = 5— / (A gin=Byin)~ " dpt, Ry = 5- JL%((AZ” kBm) A’”) (A”‘ kBZ”> |
Y

Let X,9), 4 be Hilbert spaces. Consider the control space HPT(U) = {u € Ly(0,7;4) :
uPtV) € Ly(0,7;4)}. Choose the closed and convex subset {44 in the space HP*1(41), which
is called the set of admissible controls.

Theorem 22. [16| Let the operator B be (A, p)-radial for some p € {0} UN and conditions
(A1), (A2), (B) be fulfilled. For all y € HPTY(Q)), xo, . € X there exists a unique optimal
control of solutions of problem (13), (33).
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6. Optimal Control in Sobolev-type Models
with a Relatively p-Radial Operator

Optimal control in the Chen—Gurtin model. Define the spaces X = H*(Q)) ]Zfl(Q),
Y = Lo(N2) and U = Ly(2). Reduce (7), (9) to equation (33). Fix v,d, A € R, define the
operators A = A — A, B =vA —idA?, where A is the Laplace operator. The operator
A € L(X;9), and the operator B € Cl(X;2) with domB = {x € H*(Q) : Axz(s,t) =
x(s,t) =0, s € 00}.

Lemma 7. [16] For any v, \,d € R the operator B is strongly (A,0)-radial.

The A-spectrum of operator B consists of all points of the form

vAp — idA2

A4B) = : =
o”(B) {ukeC 1k T,

itk A #£ )\} ,

where A, are the same as in the Barenblatt—Zheltov—Kochina model. Thus
DY = span{pr : \p = A}, D = span{pr : A\ # A} If the A-spectrum of operator B
is represented in the form of two components, which do not intersect and condition (B) is
fulfilled, then (13) takes the form

lim > (@) — o), o) er =0, > {(@(T) = 2), 0k) r =0, (37)

t—0+
pi €y, (B) €0y, (B)

where (-,-) is an inner product in Ly(€2).

Let us proceed to the research of the optimal control problem (7), (9), (14), (37). Define
= Ly(Q) and the operators C' = I. Take a closed convex set H'(4l). From Theorem 22
and Lemma 7 we have the following result.

Theorem 23. [16] Let the conditions of Lemma 7 be satisfied. Then for any 7 € Ry,
xo, T, € X there exists a unique optimal control u € U,q of solutions to the initial-final
problem (37) for the model (7), (9), minimizing functional (20).

Conclusion

The article presents a review of results devoted to optimal control problems for linear
Sobolev type equations with the Cauchy (Showalter—Sidorov) initial conditions or the
initial-final conditions obtained by scientific school headed by Professor G.A. Sviridyuk.
Abstract results in relatively bounded, sectorial and radial cases, allowing to study a
wide class of non-classical models of mathematical physics are presented. Note that these
results and methods have found applications in solving various problems, in particular,
in the study of degenerate balance models (Leontief type models), as well as in finding
the optimal dynamic measurements [34-36]. In addition, these results formed the basis
of the study of optimal control problems for the non-autonomous linear Sobolev type
equations [17], including the multipoint initial-final conditions [37-39], and were developed
to the semi-linear case |9]. At present, there is an active extension of objects and methods
of Sobolev type equations theory. Abstract results are transferred to the case of quasi-
Banach spaces, stochastic Sobolev type equations [35, 36,40, 41]. The study of positive
solutions has started.

Bectauk FOYpI'Y. Cepus <«MaremaTndeckoe MOAeJIMPOBaHUE 23
u nporpammupoBanues> (Becruuk FIOYpI'Y MMII). 2020. T. 13, Ne 1. C. 5-27



A.A. Zamyshlyaeva, N.A. Manakova, O.N. Tsyplenkova

Acknowledgment. The authors express their sincere gratitude to Professor G.A. Svi-
ridyuk for useful consultations, constructive criticism and opportunities provided.

References

1.

10.

11.

12.

13.

14.

15.

16.

Barenblatt G.I., Zheltov Yu.P., Kochina I.N. Basic Concepts in the Theory of Seepage of
Homogeneous Fluids in Fissurized Rocks. Journal of Applied Mathematics and Mechanics,
1960, vol. 24, no. 4, pp. 1268-1303. DOI: 10.1016/0021-8928(60)90107-6

Sviridyuk G.A., Efremov A.A. Optimal Control Problem for One Class of Linear Sobolev
Type Equations. Russian Mathematics, 1996, vol. 40, no. 12, pp. 60-71.

Sviridyuk G.A., Fedorov V.E. Linear Sobolev Type Equations and Degenerate Semigroups of
Operators. Utrecht; Boston; Koln; Tokyo, VSP, 2003. DOI: 10.1515/9783110915501

Zagrebina S.A. The Initial-Finite Problems for Nonclassical Models of Mathematical Physics.
Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming
and Computer Software, 2013, vol. 6, no. 2, pp. 5-24. (in Russian)

Hoff N.J. Creep Buckling. Journal of the Aeronautical Sciences, 1956, no. 7, pp. 1-20.
DOI: 10.1017/S0001925900010106

Sviridyuk G.A., Shemetova V.V. Hoff Equations on Graphs. Differential Equations, 2006,
vol. 42, no. 1, pp. 139-145. DOI: 10.1134/S0012266106010125

Sviridyuk G.A., Kazak V.O. The Phase Space of an Initial-Boundary Value Problem
for the Hoff Equation. Mathematical Notes, 2002, vol. 71, no. 1-2, pp. 262-266.
DOI: 10.4213/mzm347

Manakova N.A., Dyl’kov A.G. Optimal Control of the Solutions of the Initial-Finish
Problem for the Linear Hoff Model. Mathematical Notes, 2013, vol. 94, no. 2, pp. 220-230.
DOI: 10.1134/S0001434613070225

Sviridyuk G.A., Manakova N.A. An Optimal Control Problem for the Hoff
Equation. Journal of Applied and Industrial Mathematics, 2007, no. 2, pp. 247-253.
DOI: 10.1134/51990478907020147

Zamyshlyaeva A.A., Tsyplenkova O.N. Optimal Control of Solutions of the Showalter—
Sidorov—Dirichlet Problem for the Boussinesq—Love Equation. Differential Equations, 2013,
vol. 49, no. 11, pp. 1356-1365. DOI: 10.1134/S0012266113110049

Zamyshlyaeva A.A., Bychkov E.V., Tsyplenkova O.N. Mathematical Models Based on
Boussinesq—Love Equation. Applied Mathematical Sciences, 2014, vol. 8, pp. 5477-5483.
DOI: 10.12988 /ams.2014.47546

Dzektser E.S. |The Generalization of the Equations of Motion of Groundwater|. Dokl. Akad.
Nauk SSSR, 1972, no. 5, pp. 1031-1033. (in Russian)

Sviridyuk G.A., Efremov A.A. Optimal Control of Sobolev Type Linear Equations with
Relativity p-Sectorial Operators. Differential Equations, 1995, vol. 31, no. 11, pp. 1882-1890.
Manakova N.A., Dyl’kov A.G. Optimal Control of Solutions of the Initial-Finish Value
Problem for a Evolutionary Models. Yakutian Mathematical Journal, 2012, vol. 19, no. 2,
pp. 111-127. (in Russian)

Chen P.J., Gurtin M.E. On a Theory of Heat Conduction Involving Two Temperatures.
Zeitschrift  fir angewandte mathematik und physik, 1968, vol. 19, pp. 614-627.
DOI: 10.1007/BF01594969

Manakova N.A., Sviridyuk G.A. An Optimal Control of the Solutions of the Initial-
Final Problem for Linear Sobolev Type Equations with Strongly Relatively p-Radial

Operator. Springer Proceedings in Mathematics and Statistics, 2015, vol. 13, pp. 213-224.
DOI: 10.1007/978-3-319-12145-1 13

24

Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2020, vol. 13, no. 1, pp. 527



OB30OPHBIE CTATBHI

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Sagadeeva M.A., Zagrebina S.A., Manakova N.A. Optimal Control of Solutions of
a Multipoint Initial-Final Problem for Non-Autonomous Evolutionary Sobolev Type
Equation. FEwvolution Equations and Control Theory, 2019, vol. 8, no. 3, pp. 473-488.
DOI: 10.3934 /eect.2019023

Demidenko G.V., Uspenskii S.V. Partial Differential Equations and Systems Not Solvable
with Respect to the Highest-Order Derivative. N.Y., Basel, Hong Kong, Marcel Dekker,
2003. DOI: 10.1201/9780203911433

Favini A., Yagi A. Degenerate Differential Equations in Banach Spaces. N.Y., Basel, Hong
Kong, Marcel Dekker, 1999. DOI: 10.1201/9781482276022

Sviridyuk G.A. |[The Manifold of Solutions of an Operator Singular Pseudoparabolic
Equation|. Dokldy Akademii Nauk SSSR, 1986, vol. 289, no. 6, pp. 1315-1318. (in Russian)

Al’shin A.B., Korpusov M.O., Sveshnikov A.G. Blow-up in Nonlinear Sobolev Type Equations.
De Gruyter, 2011. DOI: 10.1515/9783110255294

Showalter R.E. The Sobolev Equation. Applicable Analysis, 1975, vol. 5, no. 1, pp. 15-22;
vol. 5, no. 2, pp. 81-89. DOI: 10.1080/00036817508839103

Sviridyuk G.A., Zagrebina S.A. The Showalter—Sidorov Problem as a Phenomena of the
Sobolev-Type Equations. The Bulletin of Irkutsk State University. Series: Mathematics, 2010,
vol. 3, no. 1, pp. 104-125. (in Russian)

Keller A.V., Zagrebina S.A. Some Generalizations of the Showalter—Sidorov Problem for
Sobolev-Type Models. Bulletin of the South Ural State University. Series: Mathematical
Modelling, Programming and Computer Software, 2015, vol. 8, no. 2, pp. 5-23. (in Russian)
DOI: 10.14529/mmp150201

Sviridyuk G.A., Zagrebina S.A. Verigin’s Problem for Linear Equations of the Sobolev
Type with Relatively p-Sectorial Operators. Differential FEquations, 2002, vol. 38, no. 12,
pp. 1745-1752. DOI: 10.1023/A:1023812213901

Sviridyuk G.A., Efremov A.A. Optimal Control for a Class of Degenerate Linear Equations.
Doklady Akademii Nauk, 1999, vol. 364, no. 3, pp. 323-325.

Fedorov V.E., Plekhanova M.V. Optimal Control of Sobolev Type Linear Equations.
Differential Equations, 2004, vol. 40, no. 11, pp. 1627-1637. DOI: 10.1007 /s10625-004-0013-1

Fedorov V.E., Ruzakova O.A. Controllability in Dimensions One and Two of Sobolev-Type
Equations in Banach Spaces. Mathematical Notes, 2003, vol. 74, no. 3-4, pp. 583-592.
DOI: 10.1023/A:1026160314352

Zamyshlyaeva A.A. The Higher-Order Sobolev-Type Models. Bulletin of the South Ural State
University. Series: Mathematical Modelling, Programming and Computer Software, 2014,
vol. 7, no. 2, pp. 5-28. (in Russian)

Zamyshlyaeva A.A., Tsyplenkova O.N. Optimal Control of Solutions to Cauchy Problem
for Sobolev Type Equation of Higher Order. Journal of Computational and Engineering
Mathematics, 2014, vol. 1, no. 2, pp. 62—67.

Zamyshlyaeva A.A., Tsyplenkova O.N., Bychkov E.V. Optimal Control of Solutions to the
Initial-Final Problem for Sobolev Type Equation of Higher Order. Journal of Computational
and Engineering Mathematics, 2016, vol. 3, no. 2, pp. 57-67. DOI: 10.14529 /jcem1602007
Bayazitova A.A. The Sturm-Liouville Problem on Geometric Graph. Bulletin of the
South Ural State University. Series: Mathematical Modelling, Programming and Computer
Software, 2010, no. 16 (192), issue 5, pp. 4-10. (in Russian)

Fedorov V.E [About Some Relations in the Theory of Degenerate Operator Semigroups|.

Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming
and Computer Software, 2008, no. 15 (115), issue 7, pp. 89-99. (in Russian)

Bectauk FOYpI'Y. Cepusa <MaremaTundeckoe MOAeJIMPOBAHUE 25
u nporpammupoBanues> (Becruuk FOYpI'Y MMII). 2020. T. 13, Ne 1. C. 5-27



A.A. Zamyshlyaeva, N.A. Manakova, O.N. Tsyplenkova

34.

35.

36.

37.

38.

39.

40.

41.

Shestakov A.L., Keller A.V., Nazarova E.I. Numerical Solution of the Optimal
Measurement Problem. Automation and Remote Control, 2012, vol. 73, no. 1, pp. 97-104.
DOI: 10.1134/S0005117912010079

Keller A.V., Shestakov A.L., Sviridyuk G.A., Khudyakov Y.V. The Numerical Algorithms
for the Measurement of the Deterministic and Stochastic Signals. Springer Proceedings in
Mathematics and Statistics, 2015, vol. 113, pp. 183-195. DOI: 10.1007/978-3-319-12145-1 11

Shestakov A.L., Sagadeeva M.A. Stochastic Leontieff-Type Equations with Multiplicative
Effect in Spaces of Complex-Valued Noises. Bulletin of the South Ural State University.

Series: Mathematical Modelling, Programming and Computer Software, 2014, vol. 7, no. 4,
pp. 132-139. DOI: 10.14529/mmp140412

Zagrebina S.A., Soldatova E.A., Sviridyuk G.A. The Stochastic Linear Oskolkov Model of
the Oil Transportation by the Pipeline. Springer Proceedings in Mathematics and Statistics,
2015, vol. 113, pp. 317-325. DOI: 10.1007/978-3-319-12145-1 20

Sviridyuk G.A., Zagrebina S.A., Konkina A.S. The Oskolkov Equations on the Geometric
Graphs as a Mathematical Model of the Traffic Flow. Bulletin of the South Ural State
University. Series: Mathematical Modelling, Programming and Computer Software, 2015,
vol. 8, no. 3, pp. 148-154. DOI: 10.14529/mmp1503010

Zagrebina S.A., Konkina A.S. The Multipoint Initial-Final Value Condition for the Navier—
Stokes Linear Model. Bulletin of the South Ural State University. Series: Mathematical
Modelling, Programming and Computer Software, 2015, vol. 8, mno. 1, pp. 132-136.
DOI: 10.14529/mmp150111

Favini A., Sviridyuk G.A., Sagadeeva M.A. Linear Sobolev Type Equations with Relatively
p-Radial Operators in Space of “Noises”. Mediterranean Journal of Mathematics, 2016, vol. 13,
no. 6, pp. 4607-4621. DOI: 10.1007/s00009-016-0765-x

Favini A., Zagrebina S.A., Sviridyuk G.A. Multipoint Initial-Final Value Problems for
Dynamical Sobolev-Type Equations in the Space of “Noises”. Electronic Journal of Differential
FEquations, 2018, vol. 2018, no. 128, pp. 1-10.

Received December 11, 2019

YK 517.9 DOI: 10.14529 /mmp200101

OIITUMAJIBHOE YIIPABJIEHUE B JINHEMHBIX
MATEMATNYECKNX MOAEJIAX COBOJIEBCKOI'O TUITA

A.A. Bamvrwuwasesa', H.A. Manaxosa', O.H. ITuinaenxosa
'TOkH0- Y pasIbeKuit TocyIapCTBeHHbBIH YHUBEPCUTET, T. UeIa0micK,
Poccniickas ®enepariust

B crarbe npejcrasiien 0630p paboT UeasiONHCKON MaTeMaTUIeCKON MITKOJIbI [0 Y paBHe-
HUSIM CODOJIEBCKOT'O TUIIA [IPU MCCJIEIOBAHUN 33Ia91 OIITUMAJIBHOTO YIIPABJIEHUS JIJIs JINHET-
HBIX MoJeJiell co6osIeBCKOro Tuila ¢ HadabHbIM yesopueM Ko (Iloyosnrepa — Cumoposa)
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Asena

podeccop,
YpaabcKuit

UM HAYAJIbHO-KOHEYHBIM YCJIOBHEM. JIJIs1 BBISIBJIEHUST HEITyCTOTBI MHOYXKECTBA, JIOIYyCTUMBIX
peleHnii 3a1a91 yIPaBJIEHUs UCIIOIb3yETCsT Y2KE XOPOIIO 3aPEKOMEHI0OBABININA cebsi pu
pelleHnn ypaBHeHu coB0IEBCKOTO THIIA MeTO. (ha30BOr0 IMPOCTPAHCTBA, 3AK/IIOTAIONTHIi-
¢ B PEAYKIUU CUHTYJISIPHOIO YPABHEHUSI K PETYJISIPHOMY, OIPEIEJIEHHOMY Ha HEKOTOPOM
HOJIIPOCTPAHCTBE HCXOMHOTO IIPOCTPAHCTBA W HPUMEHEHUH TEOPHUU BBLIPOXKICHHBIX (II0-
JIy)TPYIII OIIePaTOPOB Ha CJIy4ail OTHOCUTEJHLHO OIPDAHMYEHHBIX, CEKTOPHAJIBHBIX U DPaJiy-
AJIbHBIX OIEPATOpoB. B paboTe NpOBOAUTCS PEAYKIM MATEMATHIECKIX MOJIEIeH K HaTa Ib-
HBbIM (HAYAJbHO-KOHEUHBIM) 3aJad9aM [l abCTPAKTHOrO ypaBHEHHs COGOJIEBCKOIO THUIIA.
AbcrpakTHBIE PE3yJIbTaThl IPUMEHEHDBI K UCCJIEIOBAHNIO 33184 YIIPABJICHUS JIJIsi MaTeMaTH-
vyeckoii Mojesn Bapenbiarra — 2Kesroa — KounHoii, Koropast MOJEIUPyeT (PUILTPAIIIO
KHUJKOCTU B TPEIMHHOBATO-IIOPUCTOH cpeje, Mouenun Xodda Ha rpade, Momempyomeit
JIMHAMUKY BBIILy YUBAHUS JBY TABPOBBIX DAJIOK B KOHCTPYKIIUH, & TAK2KE MOJIENN Byccunecka
— JIsiBa, onuchIBaIOINIEH TPOIOJIbHBIE KOJEOAHUSI B TOHKOM yIIPYTOM CTEPKHE C yIEeTOM HHED-
UM ¥ [IPYM BHENTHEH HArpy3Ke, Jubo pacipoCTpaHeHUsT BOJH HA MEJIKOH BOJIE.

Karouesoie caosa: ypasreHus cob0Ae8CK020 MUNG; CUADHDIE PEUWEHUA; ONMUMAADHOE
ynpasasenue; dasosoe npocmparcmeo; modeav Bapenbaamma — 2Keamosa — Kowunot; mo-
deav Xogpga; modeav Byccunecka — Jlasa; modeav /esuca; modeav Yena — I'emuna.

AstekcanapoBHa 3aMBIILIseBa, JIOKTOP (DU3UKO-MAaTeMaTHIeCKUX HayK,
kadenapa <llpuknagnas MaremMaTwKa W IIporpaMMmupoBanues, HOxKHO-
rocyiapcrBernbiit  yuusepeurer (r. Yenabunck, Poccuiickas Deneparnus),

zamyshliaevaaa@susu.ru.

Haranba Anekcanaposaa ManakoBa, TOKTOP (PU3HKO-MATEMATUIECCKUX HAYK, JOIECHT,
kadepa <YpaBHEHHA MaTeMaTUIecKoi dhusnkms, H)xHo-Ypaabckuil rocy1apcTBeHHbBII
yuusepcuter (1. Yensibunck, Poccuiickast @enepanus), manakovana@susu.ru.

Ousbra Hukostaesna L piiienkoBa, KaHIuIaT (pU3HKO-MaTeMaTHICCKIX HayK, Kadeapa
<¥YpaBHeHUs MaTeMaTH4IecKoit (pusnkms, KOkHo-YpaibcKuii rocy1apcTBEHHbIN YHUBEPCH-
rer (1. Henabunck, Poceniickass Penepanust), tcyplenkovaon@susu.ru.

Hocmynu.na 6 pedaxuyuro 11 dexabps 2019 e.

Bectauk FOYpI'Y. Cepus <«MaremaTndeckoe MOAeJIMPOBaHUE 27
u nporpammupoBanues> (Becruuk FIOYpI'Y MMII). 2020. T. 13, Ne 1. C. 5-27



