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We begin classification of prime knots in the thickened torus of genus 2 hav-
ing diagrams with at most 4 crossings.  To this end, it is enough to construct a ta-
ble of prime knot projections with at most 4 crossings, and use the table to obtain 
table of prime diagrams, i. e. table of prime knots.  In this paper, we present the 
result of the first step, i. e. we construct a table of prime projections of knots in 
the thickened torus of genus 2 having at most 4 crossings.  First, we introduce 
definition of prime projection of a knot in the thickened torus of genus 2. Second, 
we construct a table of prime projections of knots in the thickened torus of genus 
2 having at most 4 crossings. To this end, we enumerate graphs of special type 
and consider all possible embeddings of the graphs into the torus of genus 2 that 
lead to prime projections. In order to simplify enumeration of the embeddings, 
we prove some auxiliary statements. Finally, we prove that all obtained projec-
tions are inequivalent. Several known and new tricks allow us to keep the process 
within reasonable limits and rigorously theoretically prove the completeness of 
the constructed table. 
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Introduction 
One of the main problems of the knot theory is to find an algorithm to recognize a knot (or link), 

i. e., to provide the studied object with a unique identifier. For instance, the identifier can be given by a 
catalog number. This approach involves the problem to construct complete tables of knots and links ar-
ranged with respect to some their numerical characteristics. Many researchers worked in this aria during 
last 150 years. Most of the constructed tables consider knots and links in the 3-dimensional sphere, see 
[1–3]. Recently, increasing interest in the theory of global knots (i. e., knots in arbitrary 3-manifolds) 
leads to tabulation of knots in manifolds different from the 3-dimensional sphere. Note tables of links in 
the projective space [4], knots in the solid torus [5], knots in the thickened Klein bottle [6], as well as 
prime knots in the lens spaces [7]. Note that, in the knot theory, recent tables includes only the so-called 
prime objects, which can not be obtained by some known operations from already tabulated objects. Vir-
tual knots and knots in the thickened surfaces have been of particular interest in the last 20 years. There-
fore, some tables of such knots were also constructed. In particular, the works [8] and [9] present perfect 
tables of virtual knots arranged with respect to number of classical crossing and construct a list of some 
properties of each knot. However, these tables are constructed without taking into account primeness 
and such important property of a knot as the genus determined by the minimal genus of the thickened 
surface which can contain the given knot. The natural idea is to classify virtual knots taking into account 
both parameters, i. e. not only number of classical crossings, but also the genus of a knot, see the papers 
[10, 11] for tables of prime knots and links in the thickened torus. In a sense, such tables can be consid-
ered as tables of prime virtual knots and links of genus 1.  

We begin classification of prime knots in the thickened torus of genus 2. To this end, in this paper, 
we present the result of the first step, i. e. we construct a table of prime projections of knots in the thick-
ened torus of genus 2 having at most 4 crossings. Our main result states that there exist exactly 14 pair-
wise inequivalent such projections. Further, we intend to use the obtained table of prime projections in 
order to construct table of prime diagrams, i. e. table of prime knots. 

The paper is organized as follows. Section 1 gives required definitions and the main result of the 
paper. Section 2 describes main ideas of the tabulation of prime projections of knots in the thickened 
torus of genus 2. 
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1. Main Result 
A direct product of two copies of an 1-dimensional sphere S1 is called a 2-dimensional torus  

T = S1×S1. Further, for shortness, we refer to a 2-dimensional torus T as a torus T. Fig. 1, a shows an 
example of a torus T endowed with a pair “meridian-longitude” of T. 

A surface Fº with a hole is obtained from the original surface F by removing the interior of a 2-
dimensional disk D. Further, for shortness, we refer to a 2-dimensional disk D as a disk D. Fig. 1, b 
shows an example: a torus Tº with a hole is obtained from a torus T by removing the interior of a disk D. 
Hereinafter, we write º  to show that a surface has one hole, ºº  to show that a surface has two holes, etc.  

By a 2-dimensional torus T2 of genus 2 we mean a surface formed by a sum of two copies of a 2-
dimensional torus Tº with a hole constructed by identifying (gluing together) their holes, see Fig. 1, c. 
Here each torus Tº is called a handle of a 2-dimensional torus T2 of genus 2. Further, for shortness, we 
refer to a 2-dimensional torus T2 of genus 2 as a torus T2. 

Let us define types of simple closed circles, which can be considered in a torus T2. 
A simple closed circle C⊂ T2 is said to be cut, if the complement T2\C consists of two components.  
In the torus T2, a cut circle C can be either trivial , i. e. bounding a disk D, or nontrivial. In the first 

case, the complement T2\C is formed by a disk D 
and a torus T2º with a hole. In the second case, the 
complement T2\C is formed by two copies of a 
torus Tº with a hole. 

A simple closed circle C⊂ T2 is said to be 
noncut, if the complement T2\C consists of the 
unique component. Namely, the complement 
T2\C is a torus Tºº with two holes. 

Two noncut simple closed circles C1, C2 ⊂  

T2 are said to be parallel to each other, if the complement T2\(C1 ∪ C2) consists of two components, 
which are a torus Tºº with two holes and an annulus A, i. e. a 2-dimensional sphere Sºº with two holes. 

Fig. 2 shows examples: C1,C2 ⊂  T2 are two noncut circles parallel to each other, while C3, C4 ⊂  T2 

are nontrivial and trivial cut circles, respectively. 
Consider a torus T2 and an interval I = [0, 1]. By a thickened torus of genus 2 we mean a 3-

dimensional manifold homeomorphic to the direct product T2×I.  
A smooth embedding of the set of m pairwise disjoint circles in the interior Int(T2×I) of the thick-

ened torus T2×I is called an m-component link in T2×I . In particular, if m=1, we have a smooth embed-
ding of the unique circle in Int(T2×I ), which is called a knot in T2× I  and denoted by K ⊂  T2× I.  

As in the classical case, knots in the thickened torus T2× I  can be given by their diagrams, which 
are defined by analogy with a classical knot diagram except that a knot is projected into the torus T2 in-
stead of a 2-dimensional sphere S2.  

A projection of a knot K in the torus T2 is a diagram of K such that the crossings of the diagram con-
tain no under/over-crossing information. Therefore, a projection can be considered as an embedding of a 
connected regular graph of degree 4, i. e. valence of each vertex of the graph is equal to 4. Vertices of G 
are called crossings of G, while connected components of the complement T2\G are called faces of G. 

Two projections G and G' in the torus T2 are said to be equivalent, if there exists a homeomorphism 
f: T2→T2 such that f(G) = G'.  

We say that an intersection point P of two circles C1 ,C2 ⊂  T2 is nontransversal, if only two of four 
angles near P are formed by both circles C1 and C2 , while the third and the forth angles are formed only 

Fig.  1. (a) A torus T endowed with a pair “meridian -longitude” , (b) a torus Tº with a hole and a disk D,  
(c) a 2-dimensional torus  T2 of genus 2  formed by a connected sum of two copies of a torus  Tº with a hole   

Fig. 2. Examples of circles in the torus  T2  
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by the circle C1 and C2 , respectively. Otherwise, i. e. if all four angles near P are formed by both circles 
C1 and C2, the intersection point P is called transversal. 

We define the following three types of projections in the torus T2.  
1. The projection G is called essential, if each face of G is homeomorphic to a disk D.  
2. The projection G is called composite, if at least one of the following conditions holds.  
(a) There exists a disk D ⊂ T2 such that the boundary ∂D intersects G transversally exactly in two 

points, which are internal for two distinct edges of G, and at least one vertex of G is inside D.  
(b) There exist two parallel noncut simple closed circles C1, C2 ⊂  T2, and two distinct edges e1, e2 

of G such that for i = 1, 2 the circle Ci intersects the edge ei transversally at exactly one internal point, 
and both surfaces (a torus Tºº with two holes and an annulus A) to which the circles divide the torus T2 
contain vertices of G.  

(c) There exists nontrivial cut simple closed circle C and two distinct edges e1 ,e2 of G such that for 
i = 1, 2 the circle C intersects the edge ei transversally at exactly one internal point, and both surfaces 
(two copies of a torus Tº with a hole) to which the circle C divide the torus T2 contain vertices of G.  

3. The projection G is called prime, if G is essential and noncomposite.  
Our table contains only prime projections. Indeed, nonessential projections correspond to knots that 

can be found in already existing tables of knots in the 3-dimensional sphere S3 [1–3], thickened annulus 
A×I (solid torus) [5], or thickened torus T×I [10]. In its turn, composite projections correspond to knots, 
which can be constructed using already known knots mentioned above. Namely, composite projections 
of types (a)–(c) correspond to knots, which can be constructed as sums of a classical knot and a knot in 
the thickened torus T2×I, a knot in the thickened torus T2×I and a knot in the thickened torus T×I, or two 
knots in the thickened torus T×I, respectively. 

Theorem 1. In the torus T2, there exist exactly 14 pairwise inequivalent prime projections with at 
most 4 crossings. The projections are given in Fig. 5.  

Theorem 1 is proved by three steps described in Section 2.  
 

2. Proof of the main result 
Let us describe main ideas of the tabulation of prime projections given in this section. We do this in 

three steps. First, Subsection 2.1 enumerates graphs of special type. Then, Subsection 2.2 considers all 
possible embeddings of the graphs into the torus T2 giving prime projections. Finally, Subsection 2.3 
proves that all constructed projections are pairwise inequivalent.  

 

2.1. Enumeration of graphs with at most 4 vertices whose embeddings into the torus T2 can be 
prime projections 

Lemma 1. If a projection G⊂ T2 is prime, then G is connected and contains no loop nor any cut pair 
of edges (i. e., removing the pair of edges gives a disconnected graph).  

Proof of Lemma 1 is similar to arguments used to prove Lemma 2 in [11].  
Lemma 2. Let G⊂ T2 be a prime projection with n crossings, then G contains exactly (n–2) faces. 
Proof. Take into account the Euler characteristic of the torus T2 and the fact that G is essential.  
Lemma 3. There exist exactly 3 graphs with at most 4 vertices whose embeddings into the torus T2 

can be prime projections, see graphs a – c given in Fig. 3.  
Proof. By virtue of Lemma 2, it is easy to see that any 

graph which embedding into the torus T2 gives a prime projection 
contains at least 3 vertices. Lemma 1 gives conditions on an abstract 
quadrivalent graph, which embedding into the torus T2 gives a prime 
projection. All graphs with at most 4 vertices satisfying the first and second conditions are enumerated 
in [10]. In this list, there are exactly 3 graphs satisfying the third condition, see graphs a−c given 
in Fig. 3.  

 

2.2. Construction of prime projections 
Lemma 4. All projections shown in Fig. 5 can be obtained as embeddings of the graphs a – c given 

in Fig. 3. Namely, the graph a gives the projection 31, the graph b gives the projections 41 and 46, and 
the graph c gives the projections 42 -45 and 47 -413.  

Proof. We construct all the projections by the following method [11]. 
Let G⊂ T2 be a prime projection represented as a union U of the circles Ci, i = 1, 2,…, m, having k 

nontransversal points.  

Fig. 3. The graphs of special type 
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Let l1, l2 be small arcs containing a nontransversal point of the projection G. We can remove the 
point by the move M shown in Fig. 4. The dashed arc β shows how to perform the inverse move M–1. 

Remove each nontransversal point of the projection G by the move M. The obtained union Uk of the 
same circles Ci, i = 1, 2,…, m contains only transversal points and is endowed with k dashed arcs β to 
show where the move M was performed. Of course, the initial projection G can be obtained from Uk by 
the inverse move M–1 performed along each dashed arc β, see Fig. 4. 

According to Lemma 3, all prime projec-
tions in the torus T2 with at most 4 crossings can 
be obtained as embeddings of the graphs a–c. In 
order to construct all the projections, we repre-
sent an embedding of each graph as a union of a 
number of circles and enumerate all possible 
combinations of types of circles and intersection 
points.  

Let us give three obvious statements, which 
allow to reduce such enumeration. 

Lemma 5. Let G⊂ T2 be a prime projection represented as a union of circles with n intersection 
points. Then  

(i) this union contains no more than (n–3) cut circles, 
(ii)  for n ≤4, all cut circles are trivial. 
Proof. Statement (i) is true according to Lemma 2 and the fact that each cut circle involves an addi-

tional face. If Statement (ii) is not satisfied, then G is either a link projection, or a nonessential projec-
tion. This completes the proof of Lemma 5. 

Lemma 6. Let G⊂ T2 be a prime projection represented as a union U of circles, and C⊂ U be a cir-
cle having exactly two intersection points with other circles embedded in the torus T2. Then both points 
are nontransversal, if C is cut, and at least one of two points is nontransversal, if C is noncut. 

Proof. If both intersection points are transversal, then C forms a projection of a component of a 
link, while we consider only projections of knots. If C is cut, then both intersection points are either 
transversal, or nontransversal. This completes the proof of Lemma 6. 

Lemma 7. Let G⊂ T2 be a prime knot projection obtained from the union Uk, which is endowed 
with k dashed arcs β. Then the following conditions hold. 

(i) The union of Uk and all k dashed arcs β divide the torus T2 into disks. 
(ii) For any two circles C1, C2 ⊂ Uk, there exists a sequence of dashed arcs β and other circles that 

connect C1 and C2.  
Proof. If Condition (i) is not satisfied, then the projection G is nonessential, and we arrive at con-

tradiction with the fact that the projection G is prime. If Condition (ii) is not satisfied, then G is a projec-
tion of a link, while G is a knot projection. This completes the proof of Lemma 7. 

Let us enumerate all possible embeddings of the graphs a–c giving prime projections. 
Graph a. Let the projection G be an embedding of the graph a in the torus T2. The pairs of double 

edges form three circles in the torus T2 such that each circle has exactly one intersection point with each 
of two other circles. According to Lemma 5, all circles are noncut. Note that there exists at most 1 trans-
versal intersection point, otherwise there exists a circle with two transversal intersection points and we 
arrive at contradiction with Lemma 6.  

Case 1. If all intersection points are nontransversal, then we remove all the points by the move M 
and see that the three circles without common points divide the torus T2 into more than one part, i. e. we 
arrive at contradiction with Lemma 2.  

Case 2. If exactly one of three intersection points is transversal, then, without loss of generality, we 
consider the circles C1 and C2 to be a pair “meridian-longitude” of one of the handles of the torus T2, and 
the circle C3 to be a meridian of another handle. We remove both nontransversal points by the move M 
and cut the torus T2 along all the three circles to obtain a sphere Sººº with three holes. By virtue of Lem-
ma 7, there exists the unique way to draw two dashed arcs β such that to connect each of two holes cor-
responded to the circle C3 with the hole formed by the circles C1 and C2 under the condition that there 
exists exactly one endpoint of a dashed arc β on each circle Ci, i = 1, 2. Apply the inverse move M–1 
along each dashed arc β and obtain the projection 31.  

Fig.  4. Move M removes a nontransversal point, while M–1 

is performed along the dashed arc β and creates the point  
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Graph b. Let the projection G be an embedding of the graph b in the torus T2. The pairs of double 
edges form four circles in the torus T2 such that each circle has exactly one intersection point with each 
of the two other circles and does not intersect the fourth circle. Note that there exist at most 2 transversal 
intersection points (moreover, each circle contains no more than one transversal intersection point), oth-
erwise there exists a circle with two transversal intersection points and we arrive at contradiction with 
Lemma 6.  

Case 1. Suppose that all four intersection points are nontransversal. 
Remove all the points by the move M and see that the four circles without common points divide 

the torus T2 into more than two parts, i. e. we arrive at contradiction with Lemma 2.  
Case 2. Suppose that exactly one of four intersection points is transversal. 
According to Lemma 5, there exists at most one cut circle, moreover, this circle is trivial. Therefore, 

without loss of generality, we consider the circles C1 and C2 to be a pair “meridian-longitude” of one of 
the handles of the torus T2, and the circle C3 to be a meridian of another handle, while the circle C4 can 
be either cut or noncut. We remove all three nontransversal points by the move M and cut the torus T2 
along all the four circles.  

Case 2.1. If the circle C4 is cut, then we obtain a sphere Sºººº with four holes. By virtue of Lemma 7, 
there exists the unique way to draw three dashed arcs β such that to connect one of two holes corre-
sponded to the circle C3 and the hole corresponded to the circle C4 with the hole formed by the circles C1 
and C2 and to connect another hole corresponded to the circle C3 with the hole corresponded to the circle 
C4 under the condition that there exists exactly one endpoint of a dashed arc β on each circle Ci, i = 1, 2. 
Apply the inverse move M–1 along each dashed arc β and obtain the projection 41.  

Case 2.2. If the circle C4 is noncut, then we obtain a sphere Sººº with three holes and an annulus A. 
In Sººº, by virtue of Lemma 7, there exists the unique way to draw two dashed arcs β such that to con-
nect the hole corresponded to the circle C3 and the hole corresponded to the circle C4 with the hole 
formed by the circles C1 and C2 under the condition that there exists exactly one endpoint of a dashed 
arc β on each circle Ci, i = 1, 2. In A, by virtue of Lemma 7, there exists the unique way to draw a 
dashed arc β such that to connect the hole corresponded to the circle C3 and the hole corresponded to the 
circle C4. Apply the inverse move M–1 along each dashed arc β and obtain the projection 46.  

Case 3. Suppose that exactly two of four intersection points are transversal. 
According to Lemma 6, these transversal points belong to different pairs of circles. Therefore, with-

out loss of generality, we consider the circles C1 and C2 to be a pair “meridian-longitude” of one of the 
handles of the torus T2, while the circles C3 and C4 form a pair “meridian-longitude” of another handle. 
We remove both nontransversal points by the move M and cut the torus T2 along all the four circles to 
obtain an annulus A. By virtue of Lemma 7, there exists no ways to draw two dashed arcs β such that to 
connect two holes under the condition that there exist exactly one endpoint of a dashed arc β on each 
circle Ci, i = 1, 2, 3, 4.  

Graph c. Let the projection G be an embedding of the graph c in the torus T2, then G can be repre-
sented as a union of three circles such that the circles C1 and C2 have no common points, while the circle 
C3 intersects each of them alternately. Further, without loss of generality, we consider the circle C1 to be 
a representative of the circles C1 and C2. Note that there exist at most 2 transversal intersection points 
(moreover, each of the circles C1 and C2 contains no more than one transversal intersection point), oth-
erwise there exists a circle with two transversal intersection points and we arrive at contradiction with 
Lemma 6. Also, according to Lemma 5, there exists at most one cut circle, moreover, this circle is triv-
ial.  

Case 1. Suppose that all intersection points are nontransversal. 
Case 1.1. Suppose that there exists no cut circles and consider all possible cases of parallel circles.  
If there are no parallel circles, then we remove all the nontransversal points by the move M and cut 

the torus T2 along all the three circles to obtain two copies of a sphere Sººº with three holes. In each Sººº, 
by virtue of Lemma 7, there exists the unique way to draw two dashed arcs β such that to connect the 
hole corresponded to the circle C3 with each of the other holes. Apply the inverse move M -1 along each 
dashed arc β and obtain the projection 412.  

If the circles C1 and C2 are parallel to each other, then they bound an annulus A without crossings, 
therefore, the projection G is nonessential, and, therefore, G is nonprime.  
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If the circles C1 and C3 are parallel to each other, then we remove all the nontransversal points by 
the move M and cut the torus T2 along all the three circles to obtain a sphere Sººº with three holes and an 
annulus A. In Sººº, by virtue of Lemma 7, there exists the unique way to draw three dashed arcs β such 
that to connect the hole corresponded to the circle C3 with each of the other holes. In A, by virtue of 
Lemma 7, there exists the unique way to draw a dashed arc β such that to connect two holes. Apply the 
inverse move M–1 along each dashed arc β and obtain the projection 410.  

Case 1.2. Suppose that there exists a cut circle and remove all the points by the move M to obtain a 
sphere Sººººº with five holes. 

If the cut circle is C1, then, by virtue of Lemma 7, there exists the unique way to draw four dashed 
arcs β such that to connect each of two holes corresponded to the circle C2 with the corresponded hole 
formed by the circle C3 and to connect the hole formed by the circle C1 with both holes formed by the 
circle C3. Apply the inverse move M–1 along each dashed arc β and obtain the projection 43.  

If the cut circle is C3, then, by virtue of Lemma 7, there exists the unique way to draw four dashed 
arcs β such that to connect each of holes corresponded to the circles C1 and C2 with the hole formed by 
the circle C3 alternately. Apply the inverse move M–1 along each dashed arc β and obtain a projection of 
a link.  

Case 2. Suppose that exactly one of four intersection points is transversal. Without loss of general-
ity, we consider the circles C1 and C3 to be a pair “meridian-longitude” of one of the handles of the torus 
T2, while the circle C2 can be either cut or noncut. We remove all three nontransversal points by the 
move M and cut the torus T2 along all the three circles.  

If the circle C2 is cut, then we obtain a torus Tºº with two holes. By virtue of Lemma 7, there exists 
the unique way to draw three dashed arcs β such that to connect twice the hole corresponded to the circle 
C2 with the hole formed by the circles C1 and C3, and the last hole with itself. Apply the inverse move 
M –1 along each dashed arc β and obtain the projection 42. 

If the circle C2 is noncut, then, without loss of generality, we consider the circle C4 to be a meridian 
of another handle of the torus T2, and obtain a sphere Sººº with three holes. By virtue of Lemma 7, there 
exist two ways to draw three dashed arcs β such that to connect each of the holes corresponded to the 
circle C2 and with the hole formed by the circles C1 and C3, and the last hole with itself alternately. In-
deed, the third possible way leads to a link projection. Apply the inverse move M–1 along each dashed 
arc β and obtain the projections 45 and 48. 

Case 3. Suppose that exactly two of four intersection points are transversal. 
According to Lemma 6, each of the circles C1 and C2 contains exactly one transversal point, there-

fore, both the circles C1 and C2 are noncut. The circle C3 is also noncut, since the circles C1 and C2 do not 
intersect each other and the circle C3 has exactly one transversal point with the circle Ci , where i = 1, 2.  

Case 3.1. Suppose that the circles C1 and C2 are parallel to each other. Without loss of generality, 
we consider the circles C1 and C2 to be two meridians of one of the handles of the torus T2, while the 
circle C3 is a longitude of the same handle. We remove both nontransversal points by the move M and 
cut the torus T2 along all three circles to obtain a torus Tº with a hole and a disk D. In D, there exists no 
dashed arcs β, otherwise we obtain either a link projection, or a nonessential (therefore, nonprime) knot 
projection. In Tº, by virtue of Lemma 7, there exists the unique way to connect the hole with itself by 
two dashed arcs β such that there exist exactly one endpoint of a dashed arc β on each circle Ci, i = 1, 2, 
and two endpoints of different dashed arcs β on the circle C3. Apply the inverse move M–1 along each 
dashed arc β and obtain the projection 49.  

Case 3.2. Suppose that the circles C1 and C2 are not parallel to each other. Without loss of general-
ity, we consider the circle Ci to be a meridian of the i-th handle of the torus T2, where i =1, 2, while the 
circle C3 is a connected sum of two longitudes of both handles. We remove both nontransversal points 
by the move M and cut the torus T2 along all three circles to obtain a sphere Sºº with two holes. By virtue 
of Lemma 7, there exist exactly four possible ways to connect the two holes by two dashed arcs β such 
that there exist exactly one endpoint of a dashed arc β on each circle Ci, i = 1, 2, and two endpoints of 
different dashed arcs β on the circle C3. These four ways are different in the sense of the following two 
facts. First, either there exists a dashed arc β connecting a hole with itself, or both dashed arcs β connect 
different holes. Second, either there exists a fragment of the circle C3 having both endpoints of different 
dashed arcs β, or there exist two fragments of the circle C3 that belong to the same hole, and each frag-
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ment contains an endpoint of a dashed arc β. Apply the inverse move M–1 along each dashed arc β and 
obtain the projections 44, 47, 411, and 413. This completes the proof of Lemma 4. 

 

 
3.3. Proof of the fact that all constructed projections are pairwise inequivalent 

Lemma 8. All 14 projections given in Fig. 5 are pairwise inequivalent.  
Proof. We associate each face of a projection with a natural number, which is equal to the number 

of edges which form the boundary of the face. Each face of a prime projection is homeomorphic to a 
disk. According to Lemma 2, the number of faces of each projection given in Fig. 5 is equal to 2 with 
the exclusion of the projection 31. 

Associate each projection (except for the projection 31) given in Fig. 5 with an ordered set {i1 i2 x}, 
where i1 and i2 are natural numbers, which are associated with faces of the projection and taking in non-

Fig. 5. Prime knot projections in the torus T2 with at most 4 crossings 
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decreasing order, and x is the graph such that the projection is an embedding of x in the torus T2, 
x⊂ { b, c} . By analogy, the projection 31 is associated with the ordered set {12 a} . 

Such ordered sets are enough to prove that all projections given in Fig. 5 are pairwise inequivalent, 
with the exception of the following 4 pairs: (42, 43), (44, 45), (49, 410), and (412, 413). 

Let us prove that projections in each of the pairs are also inequivalent. We say that an edge e of the 
projection G has type (i, j) if e is a common edge of the i-gonal and j-gonal faces of the projection G. 

1. Projections (42, 43) are inequivalent. Indeed, recall that the “straight ahead” rule determines a 
cycle composed of all edges of the projection. Only in 43, the cycle is such that there are the same num-
ber of edges of type (14, 14) between two edges of type (2, 14).  

2. Projections (44, 45) are inequivalent, because there exists no bijective mapping between their 
Gauss codes: 12324143 and 12324134, respectively.  

3. Projections (49, 410) are inequivalent, because only 49 contains the edge of type (6, 6), while the 
type of each edge of 410 is either (10, 10), or (6, 10).  

4. Projections (412, 413) are inequivalent, because only 413 contains the edges that are common for 
the same 8-gonal face, while all edges of 412 are common for both 8-gonal faces.  

Note that all tabulated projections are prime by construction.  
This completes the proof of both Lemma 8 and Theorem 1.  
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КЛАССИФИКАЦИЯ ПРИМАРНЫХ ПРОЕКЦИЙ УЗЛОВ В УТОЛЩЕННОМ ТОРЕ 
РОДА 2 С НЕ БОЛЕЕ ЧЕМ 4 ПЕРЕКРЕСТКАМИ1 
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E-mail: akimovaaa@susu.ru 

 
Мы начинаем классификацию примарных узлов в утолщенном торе рода 2, имеющих диа-

граммы с не более чем 4 перекрестками. Классификация проводится в два шага. На первом шаге 
строится таблица примарных проекций с не более чем 4 перекрестками. На втором шаге полу-
ченная таблица используется для построения таблицы примарных диаграмм, т.е. таблицы при-
марных узлов. В этой статье мы представляем результат первого шага, т.е. строим таблицу всех 
примарных проекций узлов в утолщенном торе рода 2, имеющих не более 4 перекрестков. Таб-
лица строится в три этапа. На первом этапе мы вводим определение примарной проекции узла в 
утолщенном торе рода 2. На втором этапе мы строим таблицу примарных проекций узлов в 
утолщенном торе рода 2, имеющих не более 4 перекрестков. Для этого мы перечисляем графы 
специального вида и рассматриваем все возможные вложения этих графов в тор рода 2, которые 
приводят к примарым проекциям. Здесь мы доказываем несколько вспомогательных утвержде-
ний,  сокращающих перечисление таких вложений. Наконец, на третьем этапе, мы доказываем, 
что все полученные проекции неэквивалентны. Ряд известных и новых приемов позволил удер-
жать процесс в разумных пределах и строго теоретически доказать полноту построенной табли-
цы. 

Ключевые слова: примарная проекция; узел; утолщенный тор рода 2; таблица. 
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