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The concept of a statistical analysis module for weight design of aircraft elements (for
predicting weight characteristics of one or another aircraft elements) is proposed. Models,
methods to construct single-point estimates of the predicted characteristic, quality criteria
of constructed models are considered. Two approaches to the confidence estimation of the
predicted characteristic are proposed. First approach is based on the assumption that
errors at predicting are caused by inaccurate identification of the deterministic part of
the predicted characteristic behavior. The second one is based on the assumption that
the deterministic part of the predicted characteristic behavior is identified correctly and
errors at predicting are caused by inaccuracy in the measurements. The structure, goals of
each component of the software package that implements the statistical analysis module is
considered in details. Based on the real data the problem of predicting the take-off mass
of an empty equipped airliner depending on maximum pay load and the maximum flight
distance at maximum pay load is given. By this problem applicability of considered models
and methods is demonstrated.

Keywords: weight design; aircraft; statistical analysis; software.

Introduction

Within the framework of the complex project of Moscow Aviation Institute “Creating
training and research system for weight design of the aircraft” a statistical analysis module
is created for weight design of the aircraft. At initial stages of aircraft creation, as part
of weight design, engineers of the aircraft solve various problems including predicting the
maximum take-off weight of the aircraft, the mass of the empty aircraft depending on
various factors, for example, the maximum pay load, and maximum flight distance at
maximum pay load; prediction of wing mass from the maximum take-off weight, wing
area, wing span, and other factors. In each of these problems various factors influence
on predicted value. In this regard a certain general mathematical tool is needed: various
models, estimation methods that allow to evaluate weight characteristics of one or another
element. We propose such a tool in this paper. In the manufacturing process at the
aviation industry, the construction and implementation of the statistical analysis module is
important problem, since it will allow the formation of high-quality predictions for decision-
makers at early stages of aircraft creation (in conditions of multifactorial uncertainty) and
thereby improve quality of the design decision.

Among publications devoted to the estimation of various dependences in weight
design of aircraft we distinguish among others the following. The work [1]| presents an
extensive review of various statistical and empirical formulas for predicting various weight
characteristics of the aircraft. In addition to [1] we also highlight [2-6]. The paper [2]
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considers the problem of estimating fuel consumption which is solved using decision trees.
In [3] various estimates of the aircraft mass based on least squares methods are proposed,
and an algorithm for their convolution into a single random variable characterizing initial
mass of the aircraft is given. The paper [4] provides a detailed review of publications on
the mass of the aircraft wing. In particular some factor dependencies obtained with the
help of least squares method are given. In the framework of [5| an estimate of the aircraft
mass is constructed on the basis of least squares method, while in [6] the aircraft mass is
proposed to be estimated on the basis of a stochastic dynamic system and constructing a
multi-particle filter.

In this paper we propose various models, methods, and criteria for estimating quality
of constructed dependencies for weight design of the aircraft elements. In addition to
the single-point estimation, two approaches to the confidence estimation of the predicted
characteristic are proposed. A meaningful example is considered.

1. Problem Formulation

As we noted in introduction when designing aircraft there are many problems
associated with weight design of various elements of the aircraft at a particular design stage.
In this regard we consider the problem of weight design in the most general state. At the
end of the paper, we will consider the proposed relations using a specific practical example:
predicting the take-off mass of an empty equipped airliner depending on maximum pay
load and the maximum flight distance at maximum pay load.

First we note that in the ideal case the available set of factors F}, Fy, ..., F}, is enough
to find the value of some predicted characteristic Y, that is, there is a dependence

Y:f(FlaFQJ"'7Fm)7

where f() is some known function. However, in reality f(-) is unknown and furthermore
often the set of factors we have is not enough to explain behavior of the predicted
characteristic Y.

2. Models and Methods

Since f(-) is unknown there is a problem about its estimation. Often in practical
problems there are the linear model

Y:00+91F1+92F2+...+9mFm+€, (1)

and the multiplicative model

Y = e iR Fire, (2)
where 0y, 0y,...,0,, are parameters to be estimated and ¢ is a random variable. These
parameters can be confined using some physical constraints 8 = (6, 6;,...,0,,)T € © C

C R™*! where O is a set of feasible values of 6,0, ...,0,,. Taking logarithm to the left
and right part of (2) from multiplicative model we obtain the linear one

Y =0y + 0y + 0sFy+ ...+ 0,,F, + &, (3)
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where Y = In(Y), Fy = In(F), ..., F,, = In(F,,), & = In(¢). There are also applicated
models of the form
Y:g(Fl,Fg,...,Fm,QO,Ql,...,QM)—1—5, (4)

where g(-) is some nonlinear function given from physical considerations and M + 1 is a
quantity of unknown parameters to be estimated.

A distinctive feature of weight design problems from other applied problems of
reconstructing physical dependencies is the following. The factors in weight design
problems are deterministic that does not allow in particular the use of the often used
minimax estimation and sigma-point estimation in which randomness of factors is assumed.
Therefore we use traditional methods for recovering factor dependencies: least squares
method which is still actively used not only in weight design but also in other applied and
fundamental problems [7-9|, weighted least squares, quantile regression.

Suppose that we have n observations (aircrafts): y; is the value of the predicted
characteristic Y and f;; is the value of the factor F}; for the i-th observation, i = 1,n.
Due to the possible uncertainty of some observations in addition to the classical least
squares method it makes sense to consider weighted least squares where each observation
has a certain weight w; > 0, 7 = 1, n and in order to estimate of 6, 01, . . ., 0y it is necessary
to solve the problem

sz‘(yz‘ — g(fia, fis s fims 00,01, -, 00r))* — 10%%1‘
i—1

Note that in the framework of the developed software package an user is invited to assign
each observation to one of five observation groups: reliable (w; = 1), likely reliable
(w; = 0,75), neutral (w; = 0,5), subject to doubts (w; = 0,25), unreliable (w; = 0).
Such gradation is caused by the fact that data on the weight characteristics of aircraft
elements are often a trade secret therefore aircraft manufacturing companies may distort
data on the weight characteristics of various elements. By default all observations are
assumed to be neutral and therefore the classic least squares coincides with the weighted
ones.

One more method to estimate the unknown parameters 6,6,...,0y is quantile
regression [10, 11]. For searching of estimates it is necessary to solve the problem

Z a|yi_g(f’ilafi%‘“7fim7007617"'70M)|+

yi>g(fir,fiz,- fim,00,01,--,001)

+ Z (L —a)|yi — g(fir, fizs - s fims 00,01, - - Onr)] —”9%1(51‘ (5)
vi<g(fi1,fizse-, fim,00,01,.-,001)

Taking o = 1/2 in (5), we obtain least absolute deviations method which is less sensitive
to emissions than least squares method. Note that if the function g(-) is not bounded by
6 € © then taking @ = 0 or a« = 1 we can construct the regression line enveloping all
observations. Namely when o« = 0 we get that the predicted value of weight characteristic
of the aircraft element at each fixed set of the factors f; is not more than the the exact
value y;; on the other hand, at o = 1 the predicted value of weight characteristic of the
aircraft element is not less than the exact value, i = 1, n.
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3. Criteria for Model Choice

Let 6;,07,...,03, be estimates of 6y, 6,,...,0y obtained using one of the methods
mentioned above in this article.

To check the quality of the constructed model we can use the adjusted criterion R?
widely used in practice [12-14]

n

So(yi — 9(far, fios - ooy fim, 05,05, ., 03p))?

n—1 3
n—M-—1

R =1-

Y

-

(Y = Un)?

=1

n
where 7, = y;/n. In practical problems it is assumed that more large coefficient R?

=1
and more close to 1 leads to proposed model describes a certain physical/social/economic

process better. However a single criterion of R? is not enough to draw conclusion on quality
of the constructed model. So for example in the case when the predicted characteristic has
a wide range of values and at the same time there is some physical dependence of the
predicted characteristic on several factors consideration of any one factor allows to obtain
an acceptable value of the criterion R? but at the same time the predicted values may be
significantly far from the exact values.

The deviation of the predicted values from the exact values can be calculated using

the mean absolute error
1 n
A = - T ~i )
- ;1 Y — il

where g; is a predicted value obtained by one or another method. However, the use of A
as a quality criterion is also fraught with difficulties. Proximity of the criterion A to zero
in predicting one characteristic and a deviation from zero in another does not necessarily
mean that the prediction is constructed more accurately in the first problem. This effect
is caused by the fact that if the values of the predicted characteristic are close to some
small number then the value of the criterion A a priori is close to zero. If the values of the
predicted characteristic are in the billions then the value of A is huge.
The latter drawback is eliminated by the use of the average relative error

1 < ‘yi_gi’
6= — =7

4. Confidence Estimation

The criteria mentioned in the previous section make it possible to assess the
applicability built models and its quality. However, on new data (i.e. observations that
are neither in a training sample, nor in a testing sample), when there are only values of
factors and the exact value of the predicted characteristic is unknown, these criteria do
not allow to assess how close the predicted value is to the exact one. For this purpose,
we construct confidence intervals for the predicted characteristic Y using the estimates
05,07, ...,0% of 0y,01,...,0) obtained by classical least square method. We describe two
possible ways of constructing confidence intervals.
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The first way is to find the estimates 65,07,...,0;, of unknown parameters
0y, 01, ...,0, in one or another model and subsequent estimation of the distribution law of
the errors €. Due to the fact that the number of observations on the aircraft is small, test
of hypothesis on the form of the distribution law of a random variable ¢ is complicated,
we suppose that the distribution is normal and log-normal in (4) and (2), respectively.

Consider (4), where the error € is normally distributed and )Y, 6V, ... 63} is an optimal
solution obtained by the least squares method. Then using maximum likelihood estimation
we obtain & ~ N (1, D), where

n n

. N P .
i =yi— g(fa, fiar - s fim, 007,07, 00y), 1= EZ&' D = 52(& —m)*.
i=1 i=1
Since

73<c+m—u1_5/g\/5§c+s§c+m+u1_5/g\/5) =1-7,

where c is a some constant and uy_g/ is 1 — /2 — quantile of standard normal distribution,
then 1 — g confidence interval for the predicted characteristic Y is

[g(Fl,FQ, .. .,Fm,QéV,O{V, P ,0]]\\74) +m — Ul_ﬂ/g\/g,
g(Fy, Fyy . B 08 0N 0N) + 10+ uy_g2V/ D).

Consider model (2), where the error ¢ is log-normally distributed, we make
transformation (3), 6§,6f,...,05; are given by the least squares solution. Again using
maximum likelihood estimation we obtain & ~ N (m, D), where

& = In(y;) — 0F — ie,f In(fir), m= = zn:g p-1 Zn:(éi — )%
n 4 n <
k=1 =1 i=1
Therefore, the random variable € is log-normally distributed with the parameters m and
D. Since
Plezge < ce < czi_gpa) =11,

where 25/, is 3/2 — quantile and 2z1_g/2 is 1 — 3/2 — quantile of log-normal distribution
with the parameters m and D, 1 — 3 confidence interval for the predicted characteristic Y

1S
L 9L 9L L L 9L 9L L
(2520 F{T Fy? L Fm 2y g10e® FYTFy2 L Fom].

The second approach consists in using statistical properties obtained by the least
squares method and assumption that the deterministic part in model (1) is identified
correctly, i.e. the predicted characteristic Y depends on only these factors and exactly
linearly on parameters. The error € is supposed to be normal with zero expectation. In
this case, having error is explained by inaccuracy in the measurement of factor values and
predicted characteristic.

Consider model (1), where 6%, 6% ... 6 are given by the least squares method
solution. For model (1) according to [15] we obtain the following 1 — 3 confidence interval
for useful signal, i.e. for deterministic part in model (1)

0 +0FFL + ...+ 08 F,, —ui_gj2\/0> fTW-1F,
O + 05 F 4+ ...+ O F,, + ui_gjo/ o2 fTW-Lf],
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where
1 fll f12 flm 1
1 fnl fn2 fnm Fm

and o2 is the variance of the random variable . Since value of the variance o2 is unknown,

we use 1ts estimate
n

1 m
2~ . pR _ Rr \2
ot T 2 Wi Zkl it

It is also possible to construct the confidence interval for multiplicative model (2)
using statistical properties of least squares method. To this end, suppose that in (3) € is
normally distributed with the parameters 0 and o2. According to [15] note

L=0g+60F 4 ... +0,F,— (0 +0FF + .. +60EF,) ~N(0,02f"WLf), (6)

where
1 In(fu) In(fi2) ... In(fim) 1
W= AA. H = 1 In(f21) ln'(f?) In( fom) . 111'('}?1)
1 (fﬁl) hl(fﬁ2) ce (j%wn) hl(}Qn)

Taking exponent from left and right part of equality (6) and noting that the exponent of
normal distribution is log-normal distribution we obtain that the confidence interval for
useful signal, i.e. for deterministic part in model (2) is

oL 0% 0% 9L oL 0% 0% oL
[zﬁ/QeoFl F2 ...me’Z:[_ﬂ/QeOFl F2 ...me:l’

where 23/ and z1_g /2 are 15} / 2and 1 — 6 /2 — quantiles of log-normal distribution with the
parameters 0 and o2 fTW L f Since 02 is unknown, then we use its estimate

n

02~ ﬁ Z(ln Yi) Zek In(fir))?

The fundamental difference between the first approach to constructing confidence
intervals and the second is that in the second approach the error ¢ is used to explain
measurement inaccuracies, while in the first approach it is used to explain inaccuracies
in the model. In this case, mathematically, the second approach is not completely correct
because of the possible incorrect identification of the model and replacement of the variance
of the error with its estimate. Note that the confidence interval for the linear model in the
first approach has the same length in contrast with the confidence interval for the linear
model in the second approach in which the length of the interval depends on a specific
set of factor values. Note that the variable length of the confidence interval is more logical
because for large values (for example, a million) of the predicted characteristic the length
of the confidence interval should obviously be different than for values close to zero.
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5. Structure of Software

The software package is a web server application with a user and software interface
and database. The application software shell is a container (Docker technology) with the
system and software dependencies installed in it. The latter fact allows to easily transfer
the application from one server to another without installing the necessary system and
software dependencies preinstalled in the container in advance and manage the versioning
of libraries, environments, structural and system dependencies.

The user interface of the application allows

e create a new task by submitting the training sample (csv, xls, xlsx formats) and
selecting factors, target variable, and objects of observation;

e calculate weight characteristics in an existing task using the “best” (by specific
criterion) model;

e create a new model by submitting the training sample to the input (csv, xls, xlsx
formats) and selecting factors, a target variable, objects of observation and put the
model in a collection;

e calculate weight characteristics in an existing task using an arbitrarily selected model
from the collection;

e save calculation results in a database;

e save and publish a calculation report.

The program interface (API) allows the application to interact with third-party
resources by transmitting the relevant data through specified requests. A backend
application is designed using the modular architecture shown in figure.

Model
» fitting
Data component
prepro-
cessing
component y
Appli- o
AP s e 5| Prediction
manager component
T Data
postpro- |
cessing
component .| Reporting
compotent
Block diagram of the backend application
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The modular architecture allows testing user functionality of the application. We
describe the purpose of the individual components of the backend application.

1. The data preprocessing component is intended for

1.1) translation of specified API requests into a set of commands to the
Application manager;

1.2) functional data preprocessing for their subsequent transfer to the Model
fitting, Prediction, Reporting components in accordance with a task trigger.

2. Application manager is intended for formation of the task trigger, i.e. determining the
sequence of tasks by Model fitting, Prediction, Reporting components in accordance
with the task trigger.

3. Model fitting component is intended for

3.1) fitting of statistical models using training dataset;

3.2) transfer and save the fitted model to Prediction, Reporting components.

4. Prediction component is intended for
4.1) formation of predictions on a target sample;
4.2) transfer predictions to Reporting component.
5. Reporting component is intended for formation of specified reports of numerical
experiments fitting statistical model and making predictions.
6. The data preprocessing component is intended for
6.1) Formation of specified answers to API requests;

6.2) Post-processing of functional data obtained during the execution of Model
fitting, Prediction, Reporting components in accordance with the task trigger.

The backend application is developed in Python, component testing is implemented
using Pytest technology. The application database is developed using open PostgreSQL
technology and is a standard relational model.

6. Example

Consider the problem of predicting the take-off mass of an empty equipped airliner
(OEW) depending on maximum pay load (MaxPL) and the maximum flight distance
at maximum pay load (MaxD). We will us linear model (1) in which every estimated
parameter is not less than zero since aircraft mass can not be non-positive, multiplicative
model (2) and non-linear Evdokimov’s model [1]

1
Fi,Fy, .. F, 00,04, ...,00) = 0y - MaxPL - MaxD - 05 | .
g(F, P, ... 0, %1 m) = b - Max ax (01(10—3-MaxD+02)+ 3)

First we present the training sample collected from open sources on the basis of which
we will estimate parameters of models.
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.. Table 1
Training sample
Plane OEW, | MaxPL, | MaxD, Plane OEW, | MaxPL, | MaxD,
model kg kg km model kg kg km
11-114 15000 6500 1000 B 737-300 31480 15404 4006
Dash 8 Q100 | 10433 4082 1889 B 737-600 36378 15558 4076
Dash 8 Q200 | 10501 4195 1713 B 737-700 37648 17554 3827

Dash 8 Q300 | 11793 6124 2034 B 737-800 41413 21319 3145
Dash 8 Q400 | 17186 8670 2522 B 737-900 42901 20738 3472
ATRT2 12950 7850 2220 B 737-900ER | 44676 23045 4417
ERJ135 11501 4499 2224 B 757-200 62100 21350 5642
ERJ140 11808 5292 2074 B 757-300 64580 30690 4230

ERJ145 12038 5862 1823 A318 38818 15682 3713
CRJ200-200 | 13730 0411 2491 A319 39725 18674 4023
CRJ200-200LR| 13835 6124 3148 A321 48510 26944 4380

CRJ700-700 | 19731 8528 2655 Tu-204-300 54000 18000 5920
CRJ700-700ER| 19731 8528 3209 Tu-204-200 59000 25200 4350

CRJ1000 EL | 23179 12156 2761 B 767-200 80127 33271 4263
CRJ1000 23179 12156 2761 B 767-200ER | 82377 35557 9082
CRJ1000 ER | 23179 12156 3131 B 767-300 86069 40230 4410

ERJ170 21040 9100 3255 B 767-300ER | 90011 43799 7395
ERJ175 21620 10200 3088 B 767-400ER | 103147 | 46583 6850
ERJ195 28850 13530 2924 B 777-200LR | 145150 | 63957 14083
ARJ21-700 25000 8935 2200 B 777-300ER | 167829 | 69853 10655

ARJ21-700ER | 25000 8935 3700 11-96M 132400 | 58000 7600
ARJ21-900 26270 11246 2200 A330-200 117041 | 53260 7286
An-148-100 | 25380 9000 1150 A330-300 120132 | 54868 4929
An-148-200 | 25380 12000 900 A340-200 125242 | 47758 10700

CS110 33200 13971 4074 A340-500 170370 | 61630 12244
CS130 35500 16556 5463 B 747-400 179752 | 67457 10589

B 717-200 31071 14515 2297 |B 747-400Combi| 184113 | 72167 9728
B 737-200 28622 13472 3649 B 747-400ER | 184567 | 67177 11581
B 737-500 31312 15182 3476 A380 270281 | 90718 11856

Using classical least squares method we obtain results presented in Table 2. As follows
from the Table 2 the best accuracy is given by the multiplicative model. However, its
accuracy is inadequate. To construct a more accurate prediction it is necessary to take
into account other factors for example the diameter of the fuselage, the maximum number
of passengers on board. Let us construct the OEW prediction on the test sample comparing
this prediction with exact values and also construct 0,95 confidence intervals.

] Table 2
Quality of the constructed models
Estimate R? A 5
OEW = 2,474 - MaxPL 0,967 | 7162 | 14,1

OEW = 1,414 - MaxPL%%? . MaxD%™* 0,979 | 5595 | 9,9
OEW = 0,007 - MaxPL - MaxD-

. 1 40035 0,854 | 17082 | 50,8
64,82(10=% - MaxD — 2,44) '
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The confidence interval constructed by the linear model in the first approach regardless
of the values of the factors has a length approximately 34,000 kg which is very large
therefore this interval is not shown in the Table 3. In the column “Confidence intervals” the
confidence intervals are presented in the following way: in 1 approach in the multiplicative
model, in 2 approach in the linear model, in 2 approach in the multiplicative model.

Table 3
Verification of the proposed models with a test sample
Pl Exact Linear Multiplicative Confidence
ane *AC I\ axPL|MaxD model model intervals
model value of Abs./rel Abs./rel
OEW Prediction ) " |Prediction ) ’
error error

[118600, 192534]
B 777-300 | 157800 | 66730 | 6672 | 165090 | 7290/4.6 | 151067 | 6733/4.3 |[155787, 174393]
[142154, 160584]
[9575, 15544]
ATRA2 11250 | 5450 | 2100 | 13483 |2233/19.8| 12196 | 946/8.4 | [9853, 17113]
[11477, 12965]
[10612, 17228]
ERJI145XR | 12591 | 5909 | 2635 | 14619 |2028/16.1| 13517 | 926/7.3 | [10923, 18314]
[12720,14369)
[18281, 29678]
CRJ900-900 | 21432 | 10319 | 2956 | 25529 |4097/19.1| 23286 | 1854/8.7 | [22256, 28802]
[21912,24753)
[22790, 36997]
ERJ190 27720 | 12720 | 3563 | 31469 |3749/13.5| 29029 | 1309/4.7 | [28235, 34703
[27316,30858]
[20092, 32617]
ARJ21-900ER| 26770 | 11246 | 3300 | 27823 | 1053/3.9 | 25592 | 1178/4.4 | [24534, 31112]
[24082, 27205]
[33856, 54961
B 737-400 | 33189 | 19427 | 3340 | 48062 [14873/44.8| 43124 | 9935/29 | [44981, 51143]
[40579,45840]
[34703, 56336]
A320 41345 | 19756 | 3605 | 48876 |7531/18.2| 44202 | 2857/6.9 | [45968, 51784]
[41594,46987]
[109240, 177339]
B 777-200 | 138100 | 57980 |10492| 143443 | 5343/3.9 | 139145 | 1045/0.8 |[137787, 149099
[130935,147910]
[137928, 223910]
A340-600 | 176364 | 74636 | 9847 | 184649 | 8285/4.7 | 175685 | 679/0.4 |[177314, 191986]
[165320,186753)

As follows from the Table 3 the multiplicative model also gives better results than the
linear model on the test sample. Moreover in terms of the relative error large values of
the predicted characteristic are better predicted due to the fact that least squares method
minimizes the sum of squared residuals and obviously for “large” observations there may
also be large residuals. Therefore least squares method tends to draw a regression line
closer to “large” observations. This effect wiil be eliminated by consideration of a larger
number of factors. A smaller length of confidence intervals is provided by the multiplicative
model. Moreover although exact values are not always within such confidence interval the
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upper limit always covers the exact value. At the same time the upper limit which is
rather conservative due to the high level of reliability is often not far from the exact value.
There is one abnormal observation of the Boeing 737-400 for which the available set of
two factors is obviously not enough to predict.

Conclusion

In this work we proposed the set of models, methods, and quality control criteria
for the constructed models for the statistical analysis module for weight design of
aircraft elements. Two methods were proposed for constructing confidence intervals for the
predicted characteristic (weight of one or another element of the aircraft). The meaningful
example based on real data was considered which showed the applicability of factor models
and the proposed models and methods for weight design.
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MOAVJIb CTATUCTUYECKOI'O AHAJIN3A 1JI4 BECOBOI'O
ITPOEKTNPOBAHUA SJIEMEHTOB JIETATEJIBHBIX AIIITAPATOB

A.U. Kubsyn', A.C. Illanraes', B.M. Azanos', A.H. Hznamos'

"Mockosekuit apuanuonneiii uncTuTyT, I. Mocksa, Poccuiickasg ®ejeparnus

[Ipemraraercss KOHIEMIIMS MOIYJIs CTATUCTUIECKOTO AHAIN3A JIJI BECOBOIO IIPOEKTHU-
POBAHUs JIEMEHTOB JIETATEIbHBIX AIIAPATOB (Ui IIPOrHO3UPOBAHUS BECA TOI'O UJIU UHOTO
9JIEMEHTA JIETATEJIbHBIX AIIAPATOB). PaccMaTpuBaloTCs MOJEIN, METOMBL JJIs TIOCTPOEHUST
TOYEYHBIX OILEHOK IIPOTHO3UPYEMON XapaKTEPUCTUKM, KPUTEPUU KadecTBa HOCTPOEHHBIX
mozeneit. Ilpesyaratorcss JiBa Mojxojia K JOBEPUTEILHOMY OICHUBAHUIO TPOTHO3UPYEMOI
XapaKTEPUCTUKH. B OJHOM IOXO0/I€e MPEe/IIoIaraeTcs, YTO OMUOKN B TPOrHO3NPOBAHUH BbI-
3BaHbI HETOYHOU nIeHTH(MUKAINEN TeTEPMUHAPOBAHHON YACTU IOBEIEHUS MIPOTHO3UPYe-
MOl XapaKTepPUCTUKU. B APYyrom moixo/ie IpenoiaraeTcs, 9To JeTePMIHIPOBAHHASA 9aCTh
[TOBEJIEHNSI IIPOrHO3UPYEMO XapaKTePUCTUKU UIeHTU(DUIMPOBAHA BEPHO, a OIMUOKYU B IIPO-
FHO3MPOBAHUY BbI3BAHBI HETOYHOCTHIO n3Mepenuil. [ToapobHo paccmarpuBaeTcs CTpyKTypa,
3a71a90 KaXKJI0U M3 KOMIIOHEHT IPOTPAMMHOTO KOMILIEKCA, Pean3yIONero MOAy/Ib CTaTH-
cTraeckoro anaian3a. Ha ocHOBe peasibHBIX JAHHBIX PACCMATPUBAETCS 3aa4a IPOTHO3UPO-
BAaHUsI MACCHI I[yCTOIO CHAPS2KEHHOTO IACCAXKUPCKOIO CaMOJIeTa OT ABYX (PaKTOPOB: MakK-
CAMAJIbHOII KOMMEPYECKOI HAI'PY3K!A U MaKCUMAJIbHOI JIaJIbHOCTH IIPU MaKCUMAJIbHOI KOM-
MEPYEeCKOl HArpy3Ke, B KOTOPOIl JIEMOHCTPUPYETCs IPUMEHNMOCTD IIpejlaraeMbIX MOJIeseit
U METOJIOB.

Karouesvie caosa: eecosoe npoekmuposanue; AEMAMEAbHbE ANNAPAMbL; CTAMUCTIUYE-
exull aHaAU3; NPOPAMMHHIT KOMNAEKC.
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