УДК 621.396.67

ПОЛЯРИЗАЦИОННЫЕ СВОЙСТВА РЕЗОНАТОРНОЙ АНТЕННЫ

В.А. Бухарин, Н.И. Войтович

Исследованы поляризационные свойства оригинальной плоской резонаторной антенны. Приведены основные характеристики антенны в главных плоскостях. Указаны направления дальнейших исследований.

Ключевые слова: антенная решетка; резонатор; поляризация; электромагнитное поле.

Введение

Плоские резонаторные антенны (PA) обладают высокими электродинамическими, массогабаритными и конструкторско-технологическими характеристиками [1, 2]. PA являются перспективными для применения в аэродромных радиотехнических системах. Одним из наиболее важных требований, предъявляемых к антенне, в указанных системах является требование по обеспечению линейного типа поляризации и стабильности характеристик антенны при изменении факторов окружающей среды.

Простая конструкция РА сочетается с высокой пространственновременной избирательностью, обеспечивающей высокую помехозащищенность системы.

В РА нет сложной диаграммообразующей схемы, распределяющей электромагнитную энергию между излучателями. Роль делителя мощности выполняет резонатор. Внешняя поверхность одной из стенок резонатора, выполненная в виде частично прозрачной пластины, является излучающей апертурой. Принцип работы РА основан на синфазном возбуждении излучающих элементов частично прозрачной стенки резонансной модой основного колебания объемного резонатора антенны.

Применение плоской резонаторной антенны в аэродромных радиотехнических системах повышает точностные характеристики системы и создает множество преимуществ системам по сравнению с применением традиционных антенн в виде линейных вибраторных решеток с апериодическим рефлектором.

Постановка задачи

Целью работы является исследование поляризационных характеристик плоской резонаторной антенны.

Плоская резонаторная антенна выполнена из алюминиевого сплава в виде низкого объемного цилиндрического резонатора с частично прозрачной стенкой (рис. 1). Диаметр исследуемой РА равен 1,55 λ ; высота резонатора 0,497 λ ; где λ – длина волны, соответствующая середине диапазона рабочих длин волн: $\lambda \pm 0,01\lambda$.

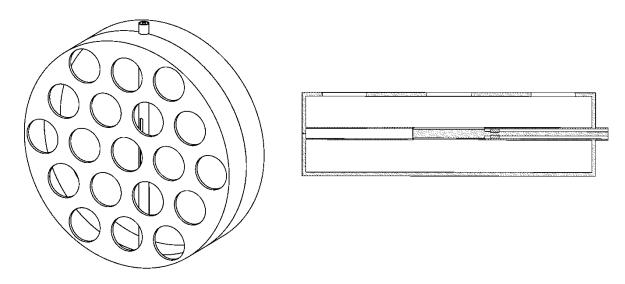


Рис. 1. Плоская резонаторная антенна

Резонатор возбуждается щелевыми излучателями, расположенными на расстоянии 0.235λ от частично прозрачной стенки. Щелевые излучатели вместе с коаксиальным волноводом образуют специальное устройство, обеспечивающее преобразование типов волн и согласование антенны в рабочей полосе частот. Коэффициент стоячей волны во всем диапазоне не превышает 1.083. Частично прозрачная стенка является излучающей апертурой антенны. Она изготовлена из металлической пластины с круглыми отверстиями. Диаметр отверстий 0.2724λ ; расстояние между отверстиями 0.31λ ; толщина металлической пластины 0.0033λ .

Требуется определить тип поляризации, отношение амплитуд главной компоненты электрического поля к кросс-составляющей компоненте и фазовый сдвиг между ортогональными компонентами.

Метод решения задачи

Электродинамическая задача сформулирована в строгой дифракционной постановке. Пространственно-временная нестационарная система уравнений Максвелла с заданными начальными и граничными условиями решается численно во временной области методом конечных интегралов (Finite Integration Technique, FIT). Метод конечных интегралов представляет собой последовательную схему дискретизации уравнений Максвелла в интегральной форме. Алгебраическая модель дискретной формулировки системы уравнений Максвелла (Maxwell's Grid Equations, MGE) включает законы сохранения энергии и заряда. Электромагнитное поле определяется в данный момент времени на основании известных значений полей в предыдущие моменты времени при заданных начальных и граничных условиях. Вычислительная процедура выполняется последовательными шагами во времени, что позволяет создавать устойчивый алгоритм расчета и контролировать точность проводимых численных вычислений.

Прямой временной метод дает полную информацию об электромагнитном поле электродинамической системы в сверхширокой полосе частот.

Результаты

На рис. 2 показана структура электрического поля в плоскости апертуры РА [1, 2]. Силовые линии вектора напряженности электрического поля ${\bf E}$ в каждом отверстии имеют строение силовых линий электрического поля волны ${\bf H}_{11}$ – основной волны в круглом волноводе.

В центре апертуры антенны расположено начало 0 сферической системы координат. Ось 0z направлена по нормали к плоскости апертуры. Ось 0y параллельна продольной оси коаксиальной линии передачи. Ось 0x на рис. 2 направлена горизонтально. Меридиональный угол Θ отсчитывается от оси 0z. Картина поля полностью симметрична относительно оси 0x и относительно оси 0y.

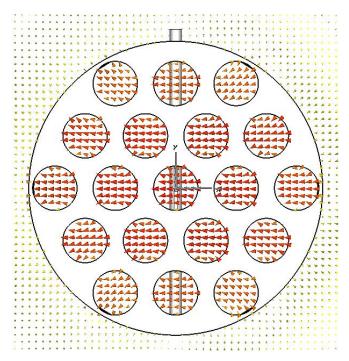


Рис. 2. Структура электрического поля в плоскости апертуры РА

Ширина ДН антенны в плоскости вектора напряженности электрического поля по уровню половинной мощности составляет 38,2 градуса, в плоскости вектора напряженности магнитного поля — 43,8 градусов. Ширина ДН по нулевому уровню, примерно, равна 55,8 градусов.

В таблице 1 представлены отношения амплитуды главной компоненты электрического поля к кросс-составляющей компоненте в плоскости вектора напряженности магнитного поля **H** в рабочем диапазоне длин волн; в таблице 2- в плоскости напряженности электрического поля **E**. $\lambda_{\min}=0.99\lambda$; $\lambda_{\max}=1.01\lambda$. В пределах главного лепестка ДН отношения компо-

нент составляет, примерно, 53–71 дБ. Плоская резонаторная антенна в главных ортогональных плоскостях имеет линейную поляризацию.

В таблице 3 представлены отношения амплитуды главной компоненты электрического поля к кросс-составляющей компоненте в рабочем диапазоне длин волн в точках наблюдения в плоскости, проходящей через ось Oz и составляющей с осью Ox угол 45 градусов.

Таблица 1 Отношение ортогональных компонент вектора напряженности электрического поля **E** в плоскости вектора **H**

Θ,	Отношение ортогональных компонент, дБ		
град	$\lambda_{ ext{max}}$	λ	$\lambda_{ m min}$
0	60,30	60,80	59,11
22	53,70	59,10	56,72
45	44,67	51,30	53,74
90	19,80	27,60	30,71

Таблица 2 Отношение ортогональных компонент вектора напряженности электрического поля **E** в плоскости вектора **E**

		L. Control of the con	*	
Θ,	Отношение ортогональных компонент, дБ			
град	$\lambda_{ ext{max}}$	λ	$\lambda_{ m min}$	
0	60,30	60,80	59,11	
19	58,90	65,87	71,40	
45	57,32	57,19	48,54	
90	56,78	55,91	55,33	

В пределах главного лепестка ДН РА отношения компонент близки к единице, фазовый сдвиг составляет, примерно, 178–181 градусов. РА в этой плоскости имеет линейную поляризацию.

Таблица 3 Отношение ортогональных компонент вектора напряженности электрического поля ${\bf E}$ в плоскости под углом 45 градусов к оси ${\bf O}x$

	<u> </u>	· · · · · · · · · · · · · · · ·	1 3
Длина	Θ, град	Отношение ортогональных	Разность фаз, град
волны		компонент	
$\lambda_{ m max}$	0 1,00		-180,0
	20	1,09	-178,7
	45	1,88	-167,3
λ	0	1,00	-179,9
	20	1,11	-178,7
	45	2,36	195,9
λ_{\min}	0	1,00	180,1
	20	1,13	181,2
	45	3,34	202,9

Полученные результаты подтверждают предположение о хороших поляризационных свойствах плоской резонаторной антенны.

Выводы

Плоская резонаторная антенна обладает уникальными электродинамическими характеристиками. В пределах рабочего полупространства не наблюдается изменения типа поляризации. Изменения в соотношении ортогональных компонент и фазовых сдвигах не имеют существенного значения. В диапазоне углов главного лепестка ДН РА поляризация строго линейная.

Плоская РА имеет низкий уровень кросс-поляризационного излучения. Она может быть использована в высокоточных радиофизических измерениях, где требуется высокая пространственно-временная избирательность и помехозащищенность радиотехнических систем.

В дальнейших исследованиях целесообразно провести анализ поляризационных характеристик РА в напряженно-деформированном состоянии в поле высоких температур и в условиях воздействий внешних факторов окружающей среды.

Работа выполнялась при финансовой поддержке Министерства образования и науки Российской Федерации в рамках комплексного проекта «Создание высокотехнологичного производства антенн и аппаратных модулей для двухчастотного радиомаячного комплекса системы посадки метрового диапазона формата ILS III категории ICAO для аэродромов гражданской авиации, включая аэродромы с высоким уровнем снежного покрова и сложным рельефом местности» по договору № 02.G25.31.0046 между Министерством образования и науки Российской Федерации и Открытым акционерным обществом «Челябинский радиозавод «Полет» в кооперации с головным исполнителем НИОКТР — Федеральным государственным бюджетным образовательным учреждением высшего профессионального образования «Южно-Уральский государственный университет» (национальный исследовательский университет).

Библиографический список

- 1. Бухарин, В.А. Плоская резонаторная антенна / В.А. Бухарин, Н.И. Войтович, Н.Н. Репин // Сборник трудов Второй Всероссийской научно-технической конференции «РАДИОВЫСОТОМЕТРИЯ-2007». Екатеринбург: ИД «Третья столица», 2007. С. 160—164.
- 2. Бухарин, В.А. Влияние нагрева на параметры резонаторной антенны / В.А. Бухарин, Н.И. Войтович // Доклады V Всероссийской конференции «Радиолокация и радиосвязь». М.: Издание JRE-ИРЭ им. В. А. Котельникова РАН, 2011. С. 105–108.

К содержанию