ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЙ ПОТЕНЦИАЛ ГАЗОВЫХ ФАЗ

Ю.С. Кузнецов, О.И. Качурина

Рассчитаны кислородные потенциалы газовых смесей (H₂ – H₂O), (CO – CO₂), (H₂ – H₂O – CO – CO₂). Полученная информация представляется номограммами, позволяющими определять соотношения между lg x_{CO_2}/x_{CO} , lg x_{H_2O}/x_{H_2} , lg (p_{O_2} , атм) и Т. В частности, по номограммам легко можно установить параметры восстановления оксидов железа в рассматриваемых газовых смесях в отсутствии и присутствии углерода.

Ключевые слова: газовая смесь, углерод, кислородный потенциал, оксиды железа, восстановление.

Многие процессы восстановления металлов реализуются с участием сложных газовых смесей, поэтому важна информация об окислительных и восстановительных способностях получаемых тем или иным способом газовых атмосфер. В частности, в одной из опубликованных в последнее время работ на эту тему [4] приводится далеко не полная и неверная информация о кислородных потенциалах различных газовых фаз, образующихся в системе $C - O_2 - H_2$.

Количественной характеристикой окислительной и восстановительной способности газовой фазы является парциальное давление кислорода, либо кислородный потенциал [1–3]:

$$\pi_{\rm O} = RT \ln[p_{\rm O_2}, \text{атм}].$$

Расчетные формулы кислородного потенциала газовой смеси, содержащей пары воды и диоксид углерода, получаются из равновесия реакций:

$$2H_2O = 2H_2 + O_2, \qquad \Delta_r G_T^{\circ}(I) = 492\,230 - 108,24 \cdot T; \qquad (I)$$

$$2\text{CO}_2 = 2\text{CO} + \text{O}_2$$
, $\Delta_r \text{G}_T^\circ(\text{II}) = 565\,390 - 175,17 \cdot T$; (II)

$$\lg[p_{O_2}, a_{TM}] = 2 \cdot \lg\left(\frac{x_{H_2O}}{x_{H_2}}\right) - \lg K_p(I) = 2 \cdot \lg\left(\frac{x_{H_2O}}{x_{H_2}}\right) - \frac{25708}{T} + 5,653; (1)$$

$$\lg[p_{O_2}, a_{TM}] = 2 \cdot \lg\left(\frac{x_{CO_2}}{x_{CO}}\right) - \lg K_p(II) = 2 \cdot \lg\left(\frac{x_{CO_2}}{x_{CO}}\right) - \frac{29529}{T} + 9,149.$$
(2)

Из этих соотношений следует линейная зависимость $\lg p_{O_2} - \frac{1}{T}$. Такие же уравнения получаются при анализе равновесия реакции горения H₂ и CO. Однако в этом случае на графике в координатах $\lg p_{O_2} - \frac{1}{T}$ должна быть серия линий, каждая из которых соответствует разным молярным отношениям $\frac{n_{H_2}}{n_{O_2}}$ и $\frac{n_{CO}}{n_{O_2}}$ в исходных смесях «H₂ – O₂» и «CO – O₂». Расчеты по уравнениям (1) и (2) для разных величин этих отношений показаны на рис. 1. Для одинаковых заданных отношений H₂ и O₂, CO и O₂ сплошные и помистично показано и помистично и помистично показано и помистично показано и помистично помистично помистично и помистично помистично помистично и помистично и помистично помистично и помистично помистично и помистично и

рис. 1. Для одинаковых заданных отношений H_2 и O_2 , CO и O_2 сплошные и пунктирные линии пересекаются при температуре 1093 К , при которой константы равновесия реакций (I) и (II) равны.

Информативность графиков рис. 1 мала, лучше [5, 6] возможные равновесные параметры выше рассмотренных систем представлять номограммами рис. 2, 3. Номограммы позволяют определить соотношения между lg $\frac{(x_{H_2O})}{(x_{H_2})}$, lg p_{O_2} и *T* для газовой смеси (H₂ – H₂O – O₂) и между lg $\frac{(x_{CO_2})}{(x_{CO})}$,

lg p_{O_2} и *T* для газовой смеси (CO₂ – CO – O₂).

Газовая смесь (CO₂ – CO) характеризуется такой важной особенностью – при соотношениях x_{CO}/x_{CO_2} больших некоторых, зависящих от температуры, величин оксид CO становится термодинамически нестабильным и диссоциирует с образованием сажистого углерода 2CO \rightarrow CO₂ + C.

В соответствии с правилом фаз Гиббса появление второй фазы в нонвариантной системе (CO – CO₂ – C) фиксируется (при заданных температуре и давлении) состав газовой смеси. Это обстоятельство отмечается линией 7 на рис. 1 и линией *mn* на рис. 3. Точки ниже этих линий определяют параметры не реализующихся состояний газовой фазы (CO – CO₂).

Для любой сколь угодно сложной газовой смеси, в которой присутствуют CO₂ и CO (или H₂O и H₂) и известны их концентрации, кислородный потенциал вычисляется по уравнениям (1) и (2). В частности равновесные параметры водяного газа (H₂ – H₂O – CO – CO₂) определяются совокупностью номограмм, представленных на рис. 2 и 3. Корреляция между этими номограммами определяется уравнениями, следующими из равновесия реакции водяного газа:

$$H_{2} + CO_{2} = H_{2}O + CO, \qquad \Delta_{r}G_{T}^{\circ}(III) = 36\,580 - 33,465 \cdot T; \qquad (III)$$
$$K_{III} = \frac{x_{H_{2}O}/x_{H_{2}}}{x_{CO_{2}}/x_{CO}}, \qquad \frac{x_{CO_{2}}}{x_{CO}} \cdot K_{III} = \frac{x_{H_{2}O}}{x_{H_{2}}}.$$

Рис. 1. Зависимость от температуры кислородного потенциала газовых фаз, получающихся при сжигании водорода или оксида углерода: сплошные линии – (H₂ – H₂O – O₂), пунктирные – (CO – CO₂ – O₂); $n_{\rm H_2}/n_{\rm O_2}$, $n_{\rm CO}/n_{\rm O_2}$ в исходных смесях: 1 – 2/1, 2 – 2,05/1, 3 – 3/1, 4 – 10/1, 5 – 50/1, 6 – 1/1; 7 – избыток углерода, система (H₂ – H₂O – CO – CO₂ – O₂ – C)

Номограммы отражают важную особенность водяного газа – равновесное состояние реализуется при бесконечном множестве сочетаний концентраций его компонентов. Параметры водяного газа кардинально изменяются, если он контактирует с чистым углеродом. В этом случае задача по оценке параметров равновесного состояния решается расчетом совместных равновесий трех возможных в системе реакций:

$$H_2 + CO_2 = H_2O + CO, \tag{III}$$

$$C + CO_2 = 2CO, \qquad \Delta_r G_T^{\circ}(IV) = 172140 - 177, 7 \cdot T;$$
 (IV)

$$C + H_2O = CO + H_2, \qquad \Delta_r G_T^{\circ}(V) = 135\,560 - 144,235 \cdot T.$$
 (V)

Рис. 2. Номограмма «lg x_{H_2O}/x_{H_2} – lg p_{O_2} – Т» для водяного газа при 1 атм: линии bb', bb" и bb" – равновесие газовой смеси (H2 – H2O) с твердыми (Fe3O4 – Fe), (Fe3O4 – FeO) и (FeO – Fe); точка b – нонвариантная система «Fe3O4 – FeO – Fe – H2 – H2O»; линия mn – в присутствии углерода (пояснения в тексте)

Рис. 3. Номограмма «lg x_{CO_2}/x_{CO} – lg p_{O_2} – T» для водяного газа при 1 атм: область ниже линии *mn* – термодинамическая неустойчивость CO; линии *aa*', *aa*" и *aa*" – равновесие газовых смесей (CO – CO₂) с твердыми (Fe₃O₄ – Fe), (Fe₃O₄ – FeO) и (FeO – Fe); точка *a* – нонвариантная система «Fe₃O₄ – FeO – Fe – CO – CO₂»

При заданной температуре *T* и давлении *P* решаем систему трех уравнений с четырьмя неизвестными:

$$\begin{cases} K_{\rm III} = \frac{x_{\rm CO} \cdot x_{\rm H_2O}}{x_{\rm CO_2} \cdot x_{\rm H_2}} = \frac{x_{\rm CO}/x_{\rm CO_2}}{x_{\rm H_2}/x_{\rm H_2O}}, \\ K_{\rm IV} = \frac{x_{\rm CO}^2}{x_{\rm CO_2}} \cdot P, \\ \sum x_i = x_{\rm CO} + x_{\rm H_2O} + x_{\rm CO_2} + x_{\rm H_2} = 1. \end{cases}$$
(3)

Система имеет множество решений, которые проще всего определяются для заданных концентраций какого-либо компонента газовой фазы. Для примера в табл. 1–3 для трех температур представлены результаты расчетов возможных концентраций компонентов водяного газа, равновесного с углеродом.

Из результатов расчетов следует, что реализуются состояния систем:

$$(H_2 - H_2O - CO - CO_2 - C),$$

параметры которых определяются координатами точек в области ниже линии *mn* на рис. 2 и 3.

Рис. 2 и 3 построены для таких интервалов величин *T*, $\lg \frac{(x_{H_2O})}{(x_{H_2})}, \frac{(x_{CO_2})}{(x_{CO})}$

и $\lg p_{O_2}$, чтобы продемонстрировать использование номограмм для определения параметров восстановления твердых оксидов железа в газовых смесях (H₂ – H₂O – CO₂ – CO) в отсутствии и присутствии углерода в качестве самостоятельной фазы.

Таблица 1

x _{CO}	x _{CO2}	x _{H2O}	$x_{\rm H_2}$	$\lg\left(\frac{x_{\rm H_2O}}{x_{\rm H_2}}\right)$	$\lg\left(\frac{x_{\rm CO_2}}{x_{\rm CO}}\right)$	$\lg(p_{\mathrm{O}_2}, \mathrm{атм})$
0	0	0	1	_	_	$-\infty$
0,001	$3,7\cdot10^{-3}$	0,275	0,720	-0,4180	0,5682	-31,90
0,003	$3,3\cdot10^{-2}$	0,515	0,450	0,0586	1,0414	-30,95
0,005	$9,1\cdot10^{-2}$	0,593	0,311	0,2803	1,2601	-30,52
0,007	0,179	0,592	0,222	0,4260	1,4078	-30,22
0,010	0,366	0,495	0,130	0,5807	1,5635	-29,91
0,011	0,443	0,441	0,105	0,6232	1,6050	-29,83
0,012	0,527	0,379	0,083	0,6596	1,6426	-29,75
0,013	0,618	0,307	0,062	0,6947	1,6770	-29,68
0,014	0,717	0,227	0,042	0,7328	1,7094	-29,62
0,016	0,936	0,041	$6,7.10^{-3}$	0,7867	1,7672	- 29,50
0,0164	0,9836	0	0	~ 0,7964	1,7780	- 29,48

при заданных значениях концентрации CO, T = 700 K, 1 атм

вычисленные							
при заданных значениях концентрации СО, T = 1000 K, 1 атм							
x _{CO}	x _{CO2}	x _{H2O}	$x_{\rm H_2}$	$lg\left(\frac{x_{\rm H_2O}}{x_{\rm H_2}}\right)$	$\lg\left(\frac{x_{\rm CO_2}}{x_{\rm CO}}\right)$	lg(p_{O_2} , атм)	
0	0	0	1	—	—	$-\infty$	
0,001	$5,123 \cdot 10^{-7}$	$3,7\cdot10^{-3}$	0,9853	-2,426	-3,290	- 26,96	
0,03	$4,61 \cdot 10^{-4}$	0,0112	0,9588	- 1,9325	- 1,813	- 23,95	
0,05	$2,56 \cdot 10^{-2}$	$1,642 \cdot 10^{-2}$	0,932	- 1,7540	-1,5907	- 23,56	
0,10	$5,12 \cdot 10^{-2}$	$3,045 \cdot 10^{-2}$	0,864	- 1,4529	- 1,2905	- 22,96	
0,20	0,0205	0,0513	0,728	- 1,1520	- 0,9892	-22.36	
0,30	0,0461	0,0625	0,591	- 0,9757	- 0,8134	- 22,01	
0,40	0,0819	0,0639	0,454	-0,8516	- 0,6888	-21,76	
0,50	0,1281	0,0557	0,316	-0,7538	-0,5914	- 21,56	
0,60	0,184	0,0376	0,178	-0,6752	-0,5133	-21,41	
0,70	0,251	0,0097	0,0393	- 0,6076	-0,4454	-21,27	
0,72	0,266	$2,92 \cdot 10^{-3}$	0,0115	- 0,5953	-0,4324	- 21,25	
0.7283	0.2717	0	0	_	-0.4325	-21.24	

Параметры равновесия системы «H₂ – H₂O – CO – CO₂ – C», вычисленные

Таблица 3

Параметры равновесия системы « $H_2 - H_2O - CO - CO_2 - C$ », вычисленные

при заданных значениях концентрации СО, T = 1500 K, 1 атм

x _{CO}	$x_{\rm CO_2}$	x _{H2O}	$x_{\rm H_2}$	$lg\left(\frac{x_{\rm H_2O}}{x_{\rm H_2}}\right)$	$\lg\left(\frac{x_{\rm CO_2}}{x_{\rm CO}}\right)$	$\lg(p_{\mathrm{O}_2}, \mathrm{атм})$
0	0	0	1	—	—	$-\infty$
0,001	~ 0	~ 0	0,99899	- 5,8173	- 6,2915	-23,12
0,03	~ 0	~ 0	0,9699	-4,2922	- 4,7665	-20,07
0,05	$1,3.10^{-6}$	$7,3.10^{-5}$	0,95	-4,1144	-4,5865	- 19,71
0,10	$5,1.10^{-6}$	$1,4.10^{-4}$	0,90	- 3,8081	- 4,2915	- 19,12
0,20	$2,0.10^{-5}$	$2,5 \cdot 10^{-4}$	0,80	- 3,5051	-4,0015	- 18,54
0,30	$4,6.10^{-5}$	3,2.10 ⁻⁴	0,70	- 3,3399	- 3,8165	- 18,17
0,40	$8,2 \cdot 10^{-5}$	$3,7.10^{-4}$	0,60	- 3,2099	- 3,6865	- 17,91
0,50	$1,3.10^{-4}$	3,8.10-4	0,50	- 3,1192	- 3,5864	- 17,71
0,60	$1,9.10^{-4}$	3,7.10 ⁻⁴	0,40	- 3,0339	- 3,5015	- 17,54
0,70	$2,5 \cdot 10^{-4}$	$3,2.10^{-4}$	0,30	- 2,9720	- 3,4465	- 17,43
0,80	$3,3.10^{-4}$	$2,5 \cdot 10^{-4}$	0,20	-2,9031	- 3,3865	- 17,31
0,90	$4,1.10^{-4}$	$1,4.10^{-4}$	0,10	- 2,8539	- 3,3415	- 17,22
0,9995	$5 \cdot 10^{-4}$	0	0	_	—	- 17,14

Линии *aa*' и *bb*' определяют параметры восстановления Fe₃O₄ до Fe при температурах ниже 850 К. Взаимное расположение линий *aa*' и *mn* на рис. 3 подтверждает известный факт, что в системе (CO₂ – CO – C) восстановить

Fe₃O₄ до Fe невозможно. Однако при температурах ниже 850 K восстановить Fe₃O₄ можно в системе (H₂ – H₂O – CO₂ – CO – C). Для этого при 700 K, например, в газовой смеси концентрация x_{H_2} должна быть больше ~ 0,82, а x_{CO} больше ~ 0,18. Создать такую атмосферу на практике весьма сложно.

При температурах выше 850 К линии *aa*'' и *bb*'' определяют параметры восстановления Fe₃O₄ до FeO. Эти линии делятся на два фрагмента – до ~ 917 К и выше ~ 917 К. В интервале температур 850–917 К восстановить Fe₃O₄ до FeO в системе (CO₂ – CO – C) нельзя, это возможно в системе (H₂ – H₂O – CO₂ – CO – C). При температурах выше 917 К восстановить Fe₃O₄ до FeO можно в атмосфере водяного газа в отсутствии углерода [7].

Аналогичные закономерности характерны для восстановления FeO до Fe, линии *aa*^{'''} и *bb*^{'''}. Эти линии делятся на два фрагмента – ниже и выше ~ 955 K. В интервале температур 850 - 955 K восстановить FeO до Fe в газовой смеси системы (CO₂ – CO – C) невозможно. Восстановление FeO до Fe протекает в системе (H₂ – H₂O – CO₂ – CO – C). При температурах **выше 955 K** восстановить FeO до Fe можно в атмосфере водяного газа и в отсутствии углерода [7].

Библиографический список

1. Теория металлургических процессов: учебник для вузов / Д.И. Рыжонков, П.П. Арсентьев, В.В. Яковлев и др. – М.: Металлургия, 1989. – 392 с.

2. Казачков, Е.А. Расчеты по теории металлургических процессов / Е.А. Казачков. – М.: Металлургия, 1988. – 288 с.

3. Михайлов, Г.Г. Термодинамика металлургических процессов и систем / Г.Г. Михайлов, Б.И. Леонович, Ю.С. Кузнецов. – М.: Изд. Дом МИСиС, 2009. – 520 с.

4. Строкина, И.В. Изменения окислительно-восстановительных свойств газовой фазы системы С – О₂ – H₂ / И.В. Строкина, Н.Ф. Якушевич // Изв. ВУЗов. Черная металлургия. – 2011. – № 6. – С. 3–5.

5. Muan, A. Phase eqilibria among oxides in steelmaking / A. Muan, E.F. Osborn. – Pergamon Press Limited, New York, 1965.

6. Кузнецов, Ю.С. Равновесие водяного газа с углеродом / Ю.С. Кузнецов, О.И. Качурина // Вестник ЮУрГУ. Серия «Металлургия». – 2015. – Т. 14. – № 2. – С. 5–11.

7. Вяткин, Г.П. Системный анализ процессов восстановления оксидов железа в атмосфере водяного газа / Г.П. Вяткин, Г.Г. Михайлов, Ю.С. Кузнецов, О.И. Качурина // Изв. ВУЗов. Черная металлургия. – 2012. – № 2. – С. 10–13.