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We propose a method for the mathematical modelling of the preparation of construction
mixes with prescribed properties. The method rests on the optimal control theory for
Leontie�-type systems. Leontie�-type equations originally arose as generalizations of the
well-known input-output model of economics taking supplies into account. Then they were
used with success in dynamical measurements, therefore giving rise to the theory of optimal
measurements.

In the introduction we describe the ideology of the proposed model. As an illustration,
we use an example of preparing of simple concrete mixes. In the �rst section we model
the production process of similar construction mixtures (for instance, concrete mixtures)
depending on investments. As a result, we determine the price of a unit of the product.
In the second section we lay the foundation for the forthcoming construction of numerical
algorithms and software, as well as conduction of simulations. Apart from that, we explain
the prescribed properties of construction mixes being optimal with respect to expenses.

Êëþ÷åâûå ñëîâà: Leontie�-type system; production of construction mixes.

Introduction

Take two square matrices L and M of size n, allowing detL = 0. The system of
ordinary di�erential equations

Lẋ =Mx+ u (1)

is called a Leontie�-type system. For the �rst time system (1) appeared as a generalization
of Leontie� input-output economical model taking supplies into account [1]. It was used to
calculate the municipal economy of the town of Emanzhelinsk in Chelyabinsk region [2].
Subsequently the Leontie�-type equations theory advanced [3]; numerical algorithms were
developed [4], software was constructed [5]. Eventually the results merged into the optimal
control theory of Leontie�-type models [6]. This theory received a new impetus for
development when it was adapted to the needs of dynamical measurements theory [7]. The
foundations of the resulting optimal measurements theory are laid in [8], the �rst survey of
its results appeared in [9], and a direction for its further development is proposed in [10].
Both theories rest on the Sobolev-type equations theory, which addresses the equations
of the form (1) in in�nite-dimensional Banach spaces. Some of the �rst publications
concerning this theory were [11, 12]. Presently the number of books dealing with this
theory is snowballing; let us just mention [13�22]. In addition, the Sobolev-type equations
theory is already extended from Banach spaces to Fr�echet spaces [23], and now it is being
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carried over to quasi-Banach spaces [24]. Finally, note also the closely related theory of
algebro-di�erential systems [25,26] with all its numerous o�shoots.

Start with considering of an example of preparing a simple concrete mix. It requires:
water x1, sand x2, gravel x3, concrete x4. In addition, we need electricity x5 to rotate the
mixer as well as labor x6 to combine everything. We can express the �rst four components
either in mass units (tonnes for instance) or in spatial units (cubic meters for instance).
The last two components cannot be measured in those units, however, we can express all
components in terms of their cost. Following the approach of Leontie�, we represent the
expenses to make concrete as the system of equations

Aẋ+Bx = u, (2)

where A and B are square matrices of size 6 whose entries characterize the capital and
current expenses to produce six variants of some grade of concrete. For instance,

6∑
k=1

a1kẋk +
6∑

k=1

b1kxk = u1

are the total expenses to produce some standard grade of concrete. To produce other
variants of the same grade, we want to use di�erent equipment and take twice as much
water. We obtain

6∑
k=1

a2kẋk + 2b11x1 +
6∑

k=2

b1kxk = u2.

Thus, varying the entries of A andB, we can, by way of system (2), consider the production
of six virtual variants of some grade of concrete.

Observe that for n = 6 system (2), up to changing notation and permutations,
coincides with system (1), which we put down as the foundation of our mathematical
model of production of construction mixes. This means, in particular, that we can increase
without any limit the number of virtual construction mixtures, introducing additional
components like, for instance, additives, catalyzers, inhibitors, and so on. Note also that
the construction of matrices L andM is a problem of economics engineering, whose solution
we leave outside the scope of this article. Henceforth we assume this problem to be solved;
we emphasize only that necessarily detL = 0 since the last column of L, following the
tradition going back to Leontief, corresponds to capital investments into labor and contains
only zeroes.

Thus, system (1) is the basis of the mathematical model of construction mixes
production. We consider solutions x = x(t) on the interval [0, τ ] with τ ∈ R+. Each solution
is a vector function x = (x1, x2, . . . , xn); each component xk = xk(t) for k = 1, 2, . . . , n
and t ∈ [0, τ ], corresponds to a component of the construction mix. The vector function
u = u(t) of t ∈ [0, τ ] in the right-hand side of (1) stands for the �nancial expenses to
produce the construction mix, in particular, its component uk = uk(t) for k = 1, 2, . . . , n
and t ∈ [0, τ ], stands for the expenses required to produce the (virtual) variant k of
the construction mix. It may seem that as the parameter t ∈ [0, τ ], which in our model
corresponds to time, grows, the expenses uk = uk(t) can only increase. However, in reality
this is not so. For instance, to speed up the process, at some moment of time t1 ∈ (0, τ)
we add a certain expensive catalyzer (for instance, gold) and remove it after some time at
the moment t1+∆t ∈ (0, τ). Clearly, at the moment t1 the expenses sharply increase, and
at the moment t1 +∆t they fall just as sharply.
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We may assume that in the beginning of the production (that is, at t = 0) a number of
components of the construction mix are already available (although this is not necessary).
Thus, we should complement system (1) with the Cauchy initial conditions x(0) = x0
(actually, we can take x0 = 0). However, it has been observed [27] that for Sobolev-
type equations, and for Leontie�-type systems (1) as their particular case, the Showalter�
Sidorov initial condition

P (x(0)− x0) = 0 (3)

is more natural, where P is a projector matrix constructed from L and M . Incidentally,
condition (3) is preferable to the Cauchy condition [4, 6] in simulations as well. In the
�rst section we present our results on the solvability of problem (1), (3) as rigorously as
possible.

In the second part of this article we explain how we understand the prescribed
properties of construction mixes. Since the proposed mathematical model comes from
economics, by the prescribed properties we mean the optimization of �nancial expenses
to produce the construction mixes. In other words, we are interested in the minimal
cost we are ready to pay to obtain the construction mix of certain composition. We
emphasize that in this article we just lay the foundation for a subsequent construction
of numerical algorithms and software, as well as conduction of simulations. It is clear that
this foundation requires powerful mathematics, which we borrow from both optimal control
theory [6] and optimal measurements theory [9]. We are not planning to cover all possible
situations immediately, but hope to have discussions with the experts in construction
mixtures to improve our mathematical models.

The authors are grateful to A. V. Keller, A. A. Zamyshlyaeva, and M. A. Sagadeeva
for their suggestions which helped to improve this article, and to S. A. Zagrebina and
N. A. Manakova, whose work gave this article an almost ideal form. We ask the readers
to address all praise to the �rst author, who initiated this study, and all critique to the
other two authors.

1. Mathematical Modelling of the Production
of Construction Mixtures

Take two square matrices L andM of size n. The matrixM is called regular with respect
to L (or brie�y, L-regular) whenever there exists a number α ∈ C such that det(αL−M) ̸=
0. If M is L-regular then there exists at most n points {µ1, µ2, . . . , µm} ⊂ C, with m ≤ n,
such that det(µkL−M) = 0 for k = 1, 2, . . . ,m. Refer to the set σL(M) = {µ1, µ2, . . . , µm}
as an L-spectrum of M . Observe that if detL ̸= 0 then the L-spectrum of M coincides
with the spectra of both L−1M and ML−1. Assuming now that M is L-regular, choose
the contour γ = {µ ∈ C : |µ| = r}, where r > max{|µ1|, |µ2|, . . . , |µm|}, and construct the
matrices

P =
1

2πi

∫
γ

(µL−M)−1Ldµ, Q =
1

2πi

∫
γ

L(µL−M)−1dµ.

Lemma 1.1. If M is an L-regular matrix then
(i) P 2 = P and Q2 = Q,
(ii) LP = QL and MP = QM .
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Theorem 1.1. If M is an L-regular matrix then there exist matrices L′ and M ′ such that
L′L = P , LL′ = Q, M ′M = In − P , and MM ′ = In −Q.

Here and henceforth In denotes the size n identity matrix. Proofs of both claims amount
to �nite-dimensional adaptations of the in�nite-dimensional results of subsection 4.1
of [17], and so we omit them.

Furthermore, taking the contour γ ⊂ C as above, construct the matrix functions

U t =
1

2πi

∫
γ

RL
µ(M)eµtdµ, F t =

1

2πi

∫
γ

LL
µ(M)eµtdµ,

where RL
µ(M) = (µL −M)−1L is the right, and LL

µ(M) = L(µL −M)−1 is the left L-
resolvent of M . Observe that the Riemann sums of both integrals converge uniformly on
every compact subset of C.

Theorem 1.2. If M is an L-regular matrix then
(i) U0 = P and F 0 = Q,
(ii) LU t = F tL and MU t = F tM for all t ∈ C,
(iii) U s+t = U sU t and F s+t = F sF t for all s, t ∈ C.

Proofs of these claims are also adaptations of the results of subsection 4.4 of [17] to our
situation, and so we omit them. It is interesting to look at these results from the classical
viewpoint, see Ch. 12 of [28].

Theorem 1.3. If M is an L-regular matrix then there exist nondegenerate square matrices
A and B of size n such that

(i) ALB = {Jn1 , Jn2 , . . . , Jnk
, Ir},

(ii) AMB = {In1 , In2 , . . . , Ink
, Nr}.

Here Jnl
for l = 1, 2, . . . , k are size nl Jordan blocks, Nr are size r square matrices,

k∑
l=1

nl + r = n,

and the parentheses { , } encode quasidiagonal matrices. Theorem 1.3 follows easily from
the results of Weierstrass, see [28], Ch.12, Section 3. Hence,

B−1PB =
1

2πi

∫
γ

B−1(µL−M)−1A−1ALBdµ =

=
1

2πi

∫
γ

{(µJn1−In1)
−1, (µJn2−In2)

−1, . . . , (µJnk
−Ink

)−1, (µIr−Nr)
−1}dµ = {On−r, Ir} = P̃

since

(µJnl
− Inl

)−1 = −Inl
−

nl∑
j=1

µjJ j
nl

for l = 1, 2, . . . , k. Similarly, A−1QA = {On−r, Ir} = Q̃ and A−1U tA =

{On−r, e
tNr} = Ũ t = F̃ t. Here On−r is the zero size n− r square matrix and

etNr =
∞∑
k=0

tkNk
r

k!
.
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Furthermore, L′ = B{Jn1
n1
, Jn2

n2
, . . . , Jnk

nk
, Ir}A. Indeed,

L′L = B{Jn1
n1
, Jn2

n2
, . . . , Jnk

nk
, Ir}AA−1{Jn1 , Jn2 , . . . , Jnk

, Ir}B−1 = BP̃B−1 = P.

In exactly the same fashion we obtain LL′ = Q. Similarly, M ′ = B{In−r,Or}A.
Consider now problem (1), (3). Refer to a vector function x ∈ C([0, τ ];Rn) ∩

C1((0, τ);Rn) satisfying system (1) as a solution to this system (for some vector function
u = u(t)). Call the solution x = x(t) to (1) a solution to (1), (3) whenever it also satis�es
condition (3) for some vector x0 ∈ Rn.

Theorem 1.4. If M is an L-regular matrix then for all x0 ∈ Rn and u = u(t) such
that u0 = (In − Q)u ∈ Cp+1([0, τ ];Rn) and u1 = Qu ∈ C([0, τ ];Rn) there exists a unique
solution x = x(t) to problem (1), (3), which, in addition, is given by

x(t) = −
p∑

q=0

HqM ′(In −Q)u0(q)(t) + U tx0 +

∫ t

0

U t−sL′Qu1(s)ds. (4)

Here H = (In − P )M ′L(In − P ) and p = max{n1, n2, . . . , nk}. Since

B−1HB = {Jn1 , Jn2 , . . . , Jnk
,Or},

it follows that H is a nilpotent matrix of degree p. We can borrow the proof from Section 4
of [17] or give it independently, using Theorem 1.3.

Remark 1.1. The components of the vector function x = x(t), t ∈ [0, τ ], are meant to be
dimensionless quantities characterizing the production of one of the (virtual) variants of
construction mix depending on the investment u = u(t) at the moment of time t = [0, τ ].
Therefore, it is necessary to include into our mathematical model the system

y = Sx, (5)

where the vector function y = y(t), t ∈ [0, τ ], expresses the quantity of construction
mixtures produced in the mass (tonnes) or spatial (cubic meters) units per unit time
t ∈ [0, τ ]. Determination of the entries of the matrix S is an engineering problem, which
we leave outside the scope of this article. We assume that matrices L, M , and S are
constructed as a result of experiments. However, we can use the vector function of expenses
u = u(t) and the vector function of resulting construction mixes y = y(t) to obtain the
vector function of prices p = p(t) for the units of products. Each component of the vector

function of prices is of the form pk(t) =
yk(t)

uk(t)
for k = 1, 2, . . . , n and t ∈ [0, τ ]. Thus, at

the moment of time t = τ , when the production is complete, the �nite price of a unit of

variant k of the construction mixture is pk(τ) =
yk(τ)

uk(τ)
, for k = 1, 2, . . . , n.

2. Mathematical Modelling of the Production of n
Construction Mixes with Prescribed Properties

Let us continue the constructing the mathematical model for production of
construction mixtures with prescribed properties. To explain our understanding of
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prescribed properties of construction mixes, introduce the space of production states
X = {x, ẋ ∈ L2((0, τ),Rn)} for some �xed τ ∈ R+. As we indicated in the introduction,
the components of the vector functions x ∈ X are dimensionless, and their relation to
the vector function u = u(t) of production expenses is expressed by equation (1), which,
in turn, is constructed experimentally. Only upon �nding (1), verifying that M is an L-
regular matrix, and determining the number p ∈ {0} ∪ N, we can de�ne the space of
�nancial expenses U = {u, u(p+1) ∈ L2((0, τ),Rn)}. Refer to a vector function x ∈ X
satisfying almost everywhere on (0, τ) system (1) for some u ∈ U as a strong solution to
this system. Call the strong solution x = x(t) to (1) a strong solution to problem (1), (3)
for some x0 ∈ Rn whenever it also satis�es the Showalter�Sidorov condition (3). By the
Sobolev embedding theorem, the components of the vector functions x ∈ X are absolutely
continuous on [0, τ ]; therefore, the Showalter�Sidorov condition is well-posed in this case.

Theorem 2.1. If M is an L-regular matrix then for all x0 ∈ Rn and u ∈ U there exists
a unique strong solution x = x(t), for t ∈ [0, τ ], to problem (1), (3), which, in addition, is
given by (4).

A proof of Theorem 2.1 follows directly from Theorem 1.4. Moreover, it is not di�cult
to give an independent proof. We will continue construction of the mathematical model,
but let us �rstly explain what we mean by the prescribed properties of construction mixes.
Unfortunately, in the framework of our model we cannot account for the full variety of
properties of construction mixes like, for instance, strength, water resistance, temperature
resistance, and so forth, separately. We have only a single integral characteristic, the cost
(per unit) of the product at almost every moment of time. Certainly, this characteristic
is su�ciently universal and can indirectly represent every combination of prescribed
properties. Nevertheless, we are ready to have discussions with the experts in construction
mixes aiming to make our mathematical model more adequate to their requirements.
Therefore, we introduce the main detail of our mathematical model, the penalty functional

J(u) = α
1∑

q=0

τ∫
0

n∑
k=1

{
[(pk(t)− p◦k(t))yk(t)]

(q)
}2
dt+

+β
æ∑

k=0

τ∫
0

⟨Rku
(k)(t), u(k)(t)⟩dt, æ = 0, 1, . . . , p+ 1.

Here pk = pk(t) is the k-th component of the vector-function of prices on each (virtual)

construction mix, pk =
uk
yk

(see Remark 1 for details). We �nd the vector-function of prices

p = (p1, p2, . . . , pn) in the process of production. In contrast to it, the vector-function
of prices p◦ = (p◦1, p

◦
2, . . . , p

◦
n) is speci�ed at the outset and re�ects (in an indirect and

integrated way) our prescribed properties of construction mixtures. We obtain the vector-
function y = (y1, y2, . . . , yn) from (4) and (5); each of its components is the quantity of
construction mix produced by the moment t ∈ [0, τ ] expressed in the spatial or mass units.
The square matrices Rk for k = 0, 1, . . . ,æ are symmetric and nonnegative by de�ned. Over
all, the second term in the penalty functional J is to control the increase of �nances during
production. Here we control not only the amounts received, but also the rate, acceleration,
and the derivatives up to order p+ 1. We introduce a such strict control here only for the
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completeness of the picture; while conducting simulations, we can replace some Rk by the
zero matrices (that is, Rk = On for some k = 0, 1, . . . ,æ). In the �rst term of J we also
take into account not only the changes in the states x = (x1, x2, . . . , xn) of production, but
also their rates. However, here we cannot neglect the rates as yet due to the mathematical
properties of the proposed model. Finally, we determine the normalization parameters
α ∈ (0, 1] and β = 1 − α in the course of simulations, and ⟨·, ·⟩ stands for the Euclidean
inner product on Rn.

We need a closed convex subset Ua∂ ⊂ U, the set of admissible �nancial expenses. For
instance,

Ua∂ = {u ∈ U : u(t) ≥ 0, t ∈ [0, τ ]},

that is, the cone of nonnegative vector-functions in U. (Recall that a vector-function u :
[0, τ ] → Rn is called nonnegative whenever all its components are nonnegative functions.)
Let us now state the problem of �nding the minima of the penalty functional J on Ua∂,
that is,

J(v) = min
u∈Ua∂

J(u). (6)

Theorem 2.2. The penalty functional J has a unique minimum point on the set Ua∂

of admissible �nancial expenses.

Indeed, the set Ua∂ is convex and closed; consequently, it is weakly closed. The
functional J is convex and continuous, and so by Mazur's theorem there exists a unique
point v ∈ Ua∂ such that (6) holds. Insert this vector function v = v(t), for t ∈ [0, τ ], into
(4) instead of u(t), and then insert the result into (5). This yields n (virtual) construction
mixes whose properties are close to those prescribed.
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ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ ÑÎÑÒÀÂÀ
ÑÒÐÎÈÒÅËÜÍÛÕ ÑÌÅÑÅÉ Ñ ÇÀÄÀÍÍÛÌÈ
ÑÂÎÉÑÒÂÀÌÈ

À.Ë. Øåñòàêîâ, Ã.À. Ñâèðèäþê, Ì.Ä. Áóòàêîâà

Ïðåäëîæåí ìåòîä ìàòåìàòè÷åñêîãî ìîäåëèðîâàíèÿ ñîñòàâà ñòðîèòåëüíûõ ñìåñåé
ñ çàäàííûìè ñâîéñòâàìè. Â îñíîâå ìåòîäà ëåæèò òåîðèÿ îïòèìàëüíîãî óïðàâëåíèÿ ñè-
ñòåìàìè óðàâíåíèé ëåîíòüåâñêîãî òèïà. Óðàâíåíèÿ ëåîíòüåâñêîãî òèïà ïåðâîíà÷àëü-
íî âîçíèêëè êàê îáîáùåíèÿ èçâåñòíîé ýêîíîìè÷åñêîé ìîäåëè Â. Ëåîíòüåâà ≪çàòðàòû
� âûïóñê≫ ñ ó÷åòîì çàïàñîâ. Çàòåì îíè ñ óñïåõîì áûëè èñïîëüçîâàíû â äèíàìè÷å-
ñêèõ èçìåðåíèÿõ, ïîðîäèâ òåì ñàìûì òåîðèþ îïòèìàëüíûõ èçìåðåíèé. Âî ââåäåíèè íà
îïèñàòåëüíîì óðîâíå îáñóæäàåòñÿ èäåîëîãèÿ ïðåäëàãàåìîé ìîäåëè. Äëÿ èëëþñòðàöèè
èñïîëüçîâàí ïðèìåð ñîñòàâëåíèÿ ïðîñòåéøèõ áåòîííûõ ñìåñåé. Â ïåðâîì ïàðàãðàôå
ìîäåëèðóåòñÿ ïðîöåññ ïðîèçâîäñòâà îäíîòèïíûõ ñòðîèòåëüíûõ ñìåñåé (íàïðèìåð, áå-
òîííûõ ñìåñåé) â çàâèñèìîñòè îò ôèíàíñîâûõ âëîæåíèé. Â ðåçóëüòàòå îïðåäåëÿåòñÿ
öåíà åäèíèöû ïðîèçâåäåííîé ïðîäóêöèè. Âî âòîðîì ïàðàãðàôå çàêëàäûâàåòñÿ îñíîâà
äëÿ áóäóùåãî ïîñòðîåíèÿ ÷èñëåííûõ àëãîðèòìîâ, êîíñòðóèðîâàíèÿ êîìïëåêñîâ ïðî-
ãðàìì è ïðîâåäåíèÿ âû÷èñëèòåëüíûõ ýêñïåðèìåíòîâ. Ïîìèìî ýòîãî äàåòñÿ îáúÿñíåíèå
çàäàííûõ ñâîéñòâ ñòðîèòåëüíûõ ñìåñåé êàê îïòèìàëüíûõ ïî çàòðàòàì.

Êëþ÷åâûå ñëîâà: ñèñòåìû ëåîíòüåâñêîãî òèïà; ïðîèçâîäñòâî ñòðîèòåëüíûõ

ñìåñåé.
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