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We propose a method for the mathematical modelling of the preparation of construction
mixes with prescribed properties. The method rests on the optimal control theory for
Leontieff-type systems. Leontieff-type equations originally arose as generalizations of the
well-known input-output model of economics taking supplies into account. Then they were
used with success in dynamical measurements, therefore giving rise to the theory of optimal
measurements.

In the introduction we describe the ideology of the proposed model. As an illustration,
we use an example of preparing of simple concrete mixes. In the first section we model
the production process of similar construction mixtures (for instance, concrete mixtures)
depending on investments. As a result, we determine the price of a unit of the product.
In the second section we lay the foundation for the forthcoming construction of numerical
algorithms and software, as well as conduction of simulations. Apart from that, we explain
the prescribed properties of construction mixes being optimal with respect to expenses.

Karuesne caosa: Leontieff-type system; production of construction mizes.

Introduction

Take two square matrices L and M of size n, allowing det L = 0. The system of
ordinary differential equations
Li=Mz+u (1)

is called a Leontieff-type system. For the first time system (1) appeared as a generalization
of Leontieff input-output economical model taking supplies into account [1]. It was used to
calculate the municipal economy of the town of Emanzhelinsk in Chelyabinsk region [2].
Subsequently the Leontieff-type equations theory advanced [3]; numerical algorithms were
developed [4], software was constructed [5]. Eventually the results merged into the optimal
control theory of Leontieff-type models [6]. This theory received a new impetus for
development when it was adapted to the needs of dynamical measurements theory |7]. The
foundations of the resulting optimal measurements theory are laid in (8], the first survey of
its results appeared in [9], and a direction for its further development is proposed in [10].
Both theories rest on the Sobolev-type equations theory, which addresses the equations
of the form (1) in infinite-dimensional Banach spaces. Some of the first publications
concerning this theory were |11,12|. Presently the number of books dealing with this
theory is snowballing; let us just mention [13-22]. In addition, the Sobolev-type equations
theory is already extended from Banach spaces to Fréchet spaces [23], and now it is being

100 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2015, vol. 8, no. 1, pp. 100-110



MATHEMATICAL MODELLING

carried over to quasi-Banach spaces [24]. Finally, note also the closely related theory of
algebro-differential systems |25,26] with all its numerous offshoots.

Start with considering of an example of preparing a simple concrete mix. It requires:
water z1, sand x, gravel z3, concrete z4. In addition, we need electricity x5 to rotate the
mixer as well as labor x4 to combine everything. We can express the first four components
either in mass units (tonnes for instance) or in spatial units (cubic meters for instance).
The last two components cannot be measured in those units, however, we can express all
components in terms of their cost. Following the approach of Leontieff, we represent the
expenses to make concrete as the system of equations

Ai + Bx = u, (2)

where A and B are square matrices of size 6 whose entries characterize the capital and
current expenses to produce six variants of some grade of concrete. For instance,

6 6
E a1, Ty + E birzr = uy
k=1 k=1

are the total expenses to produce some standard grade of concrete. To produce other
variants of the same grade, we want to use different equipment and take twice as much

water. We obtain 6

6
Z agkx'k + 2b1111 + Z blkxk = U3.

k=1 k=2
Thus, varying the entries of A and B, we can, by way of system (2), consider the production
of six virtual variants of some grade of concrete.

Observe that for n = 6 system (2), up to changing notation and permutations,
coincides with system (1), which we put down as the foundation of our mathematical
model of production of construction mixes. This means, in particular, that we can increase
without any limit the number of virtual construction mixtures, introducing additional
components like, for instance, additives, catalyzers, inhibitors, and so on. Note also that
the construction of matrices L and M is a problem of economics engineering, whose solution
we leave outside the scope of this article. Henceforth we assume this problem to be solved;
we emphasize only that necessarily det L = 0 since the last column of L, following the
tradition going back to Leontief, corresponds to capital investments into labor and contains
only zeroes.

Thus, system (1) is the basis of the mathematical model of construction mixes
production. We consider solutions = = x(t) on the interval [0, 7] with 7 € R . Each solution
is a vector function = = (z1,%s,...,%,); each component x, = zx(t) for k = 1,2,....,n
and ¢ € [0, 7], corresponds to a component of the construction mix. The vector function
u = u(t) of t € [0,7] in the right-hand side of (1) stands for the financial expenses to
produce the construction mix, in particular, its component u, = ug(t) for k = 1,2,...,n
and t € [0,7], stands for the expenses required to produce the (virtual) variant k of
the construction mix. It may seem that as the parameter ¢ € [0, 7], which in our model
corresponds to time, grows, the expenses ur = u(t) can only increase. However, in reality
this is not so. For instance, to speed up the process, at some moment of time ¢; € (0, 7)
we add a certain expensive catalyzer (for instance, gold) and remove it after some time at
the moment t; + At € (0, 7). Clearly, at the moment ¢; the expenses sharply increase, and
at the moment t; + At they fall just as sharply.
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We may assume that in the beginning of the production (that is, at ¢ = 0) a number of
components of the construction mix are already available (although this is not necessary).
Thus, we should complement system (1) with the Cauchy initial conditions z(0) =
(actually, we can take zp = 0). However, it has been observed [27| that for Sobolev-
type equations, and for Leontieff-type systems (1) as their particular case, the Showalter—
Sidorov initial condition

P(a(0) o) = 0 (3)

is more natural, where P is a projector matrix constructed from L and M. Incidentally,
condition (3) is preferable to the Cauchy condition [4, 6] in simulations as well. In the
first section we present our results on the solvability of problem (1), (3) as rigorously as
possible.

In the second part of this article we explain how we understand the prescribed
properties of construction mixes. Since the proposed mathematical model comes from
economics, by the prescribed properties we mean the optimization of financial expenses
to produce the construction mixes. In other words, we are interested in the minimal
cost we are ready to pay to obtain the construction mix of certain composition. We
emphasize that in this article we just lay the foundation for a subsequent construction
of numerical algorithms and software, as well as conduction of simulations. It is clear that
this foundation requires powerful mathematics, which we borrow from both optimal control
theory [6] and optimal measurements theory |9]. We are not planning to cover all possible
situations immediately, but hope to have discussions with the experts in construction
mixtures to improve our mathematical models.

The authors are grateful to A. V. Keller, A. A. Zamyshlyaeva, and M. A. Sagadeeva
for their suggestions which helped to improve this article, and to S. A. Zagrebina and
N. A. Manakova, whose work gave this article an almost ideal form. We ask the readers
to address all praise to the first author, who initiated this study, and all critique to the
other two authors.

1. Mathematical Modelling of the Production
of Construction Mixtures

Take two square matrices L and M of size n. The matrix M is called reqular with respect
to L (or briefly, L-regular) whenever there exists a number o € C such that det(aL — M) #
0. If M is L-regular then there exists at most n points {u1, ta, ..., pm} C C, with m < n,
such that det(upL— M) = 0 for k = 1,2,...,m. Refer to the set % (M) = {1, 2, - - -, ftn }
as an L-spectrum of M. Observe that if det L # 0 then the L-spectrum of M coincides
with the spectra of both L™'M and ML™'. Assuming now that M is L-regular, choose
the contour v = {u € C: |u| = r}, where r > max{|u1], |2}, - - -, |tm|}, and construct the
matrices

1 1
P=— [(uL— M) "'Lduy, Q= Q_i/L(ML — M) tdu.
s

211 - .

Lemma 1.1. If M is an L-regular matriz then
(i) P> =P and Q* = Q,
(1i)) LP = QL and MP = QM.
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Theorem 1.1. If M is an L-reqular matrixz then there exist matrices L' and M’ such that
L'L=P,LL'=Q, M'M =1, — P, and MM’ =1,, — Q.

Here and henceforth I, denotes the size n identity matrix. Proofs of both claims amount
to finite-dimensional adaptations of the infinite-dimensional results of subsection 4.1
of [17], and so we omit them.

Furthermore, taking the contour v C C as above, construct the matrix functions

1
V(M)etdp, F' = LL M)e'd
2m/R et dp, 5 | Lu(M)edu,

where RY(M) = (uL — M)~'L is the right, and Lﬁ(M) = L(pL — M)~ is the left L-
resolvent of M. Observe that the Riemann sums of both integrals converge uniformly on
every compact subset of C.
Theorem 1.2. If M is an L-regular matriz then

(i) U = P and F° = Q,

(it) LU* = F'L and MU* = F*M for all t € C,

(iii) Ut = UU" and F*t' = F*F" for all s,t € C.

Proofs of these claims are also adaptations of the results of subsection 4.4 of [17] to our

situation, and so we omit them. It is interesting to look at these results from the classical
viewpoint, see Ch. 12 of [28].

Theorem 1.3. If M is an L-reqular matriz then there exist nondegenerate square matrices
A and B of size n such that

(1)) ALB = {Jn,, Jngs -+ Inis I},

(ii) AMB = {L,,,1,,,....,L,,, N, }.

Here J,, for { =1,2,... k are size n; Jordan blocks, N, are size r square matrices,

k
E n,+r=mn,
=1

and the parentheses {, } encode quasidiagonal matrices. Theorem 1.3 follows easily from
the results of Weierstrass, see [28|, Ch.12, Section 3. Hence,

1
B'PB = | B (uL— M)A ALBdy =
Y

T

27_(_@ /{ n1 n1 ) (,UJng _Hng)_la ety (Mjnk _]Ink)_ly (M]IT_Nv)_l}dM - {@n—m ]17} - P
since

ny
(Iu’an - an>_1 = _]Inl - Z:uj‘]rj”

for I = 1,2,....k Similarly, A QA = {0,,,I.} = Q and A"'U'A
{0,_,, e} = Ut — F*. Here Q,,_, is the zero size n — r square matrix and
N, PNE

B k!

(&
k=0
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Furthermore, L' = B{J}, J2, ..., J% I, } A. Indeed,

ny? T ny?

L'L=B{Jm, J, . . J* LYAA Y Ju,, Juys - Jny, L} B = BPB™' = P,

ni ng ottt nk7

In exactly the same fashion we obtain LL' = ). Similarly, M’ = B{L,,_,, O, } A.

Consider now problem (1), (3). Refer to a vector function z € C([0,7];R") N
C*((0,7); R") satisfying system (1) as a solution to this system (for some vector function
u = u(t)). Call the solution x = x(t) to (1) a solution to (1), (3) whenever it also satisfies
condition (3) for some vector xy € R™.

Theorem 1.4. If M is an L-regular matriz then for all o € R™ and u = u(t) such
that v’ = (I, — Q)u € CPT([0,7];R™) and u' = Qu € C([0,7];R"™) there exists a unique
solution x = x(t) to problem (1), (3), which, in addition, is given by

x(t) = — Z HIM' (I, — Q)u’D(t) + Ulwy + /Ot U™L'Qu'(s)ds. (4)
q=0

Here H = (I,, — P)M'L(L,, — P) and p = max{ny,na,...,nx}. Since
B'HB = {Ju, Jnyy -+ Iny, O},

it follows that H is a nilpotent matrix of degree p. We can borrow the proof from Section 4
of [17] or give it independently, using Theorem 1.3.

Remark 1.1. The components of the vector function z = z(t), t € [0, 7|, are meant to be
dimensionless quantities characterizing the production of one of the (virtual) variants of
construction mix depending on the investment u = u(t) at the moment of time ¢ = [0, 7].
Therefore, it is necessary to include into our mathematical model the system

y = Sz, (5)

where the vector function y = y(t), t € [0,7], expresses the quantity of construction
mixtures produced in the mass (tonnes) or spatial (cubic meters) units per unit time
t € [0, 7]. Determination of the entries of the matrix S is an engineering problem, which
we leave outside the scope of this article. We assume that matrices L, M, and S are
constructed as a result of experiments. However, we can use the vector function of expenses
u = u(t) and the vector function of resulting construction mixes y = y(¢) to obtain the
vector function of prices p = p(t) for the units of products. Each component of the vector

t
function of prices is of the form pg(t) = i (?) for k =1,2,...,n and t € [0,7]. Thus, at

uk(t)
the moment of time ¢ = 7, when the production is complete, the finite price of a unit of
T
variant k of the construction mixture is pg(7) = &(;, for k=1,2,...,n.
Up\T

2. Mathematical Modelling of the Production of n
Construction Mixes with Prescribed Properties

Let us continue the constructing the mathematical model for production of
construction mixtures with prescribed properties. To explain our understanding of
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prescribed properties of construction mixes, introduce the space of production states
X ={z, i € Ly((0,7),R™)} for some fixed 7 € R,. As we indicated in the introduction,
the components of the vector functions z € X are dimensionless, and their relation to
the vector function u = u(t) of production expenses is expressed by equation (1), which,
in turn, is constructed experimentally. Only upon finding (1), verifying that M is an L-
regular matrix, and determining the number p € {0} UN, we can define the space of
financial erpenses b = {u,uP*V € Ly((0,7),R")}. Refer to a vector function r € X
satisfying almost everywhere on (0, 7) system (1) for some u € i as a strong solution to
this system. Call the strong solution x = z(t) to (1) a strong solution to problem (1), (3)
for some xy € R"™ whenever it also satisfies the Showalter—Sidorov condition (3). By the
Sobolev embedding theorem, the components of the vector functions x € X are absolutely
continuous on [0, 7]; therefore, the Showalter—Sidorov condition is well-posed in this case.

Theorem 2.1. If M is an L-reqular matriz then for all xg € R™ and u € U there exists
a unique strong solution x = x(t), for t € [0,7|, to problem (1), (3), which, in addition, is
given by (4).

A proof of Theorem 2.1 follows directly from Theorem 1.4. Moreover, it is not difficult
to give an independent proof. We will continue construction of the mathematical model,
but let us firstly explain what we mean by the prescribed properties of construction mixes.
Unfortunately, in the framework of our model we cannot account for the full variety of
properties of construction mixes like, for instance, strength, water resistance, temperature
resistance, and so forth, separately. We have only a single integral characteristic, the cost
(per unit) of the product at almost every moment of time. Certainly, this characteristic
is sufficiently universal and can indirectly represent every combination of prescribed
properties. Nevertheless, we are ready to have discussions with the experts in construction
mixes aiming to make our mathematical model more adequate to their requirements.
Therefore, we introduce the main detail of our mathematical model, the penalty functional

+8> /(Rku<k>(t),u<k>(t)>dt, e=0,1,...,p+1.
0

Here py = pr(t) is the k-th component of the vector-function of prices on each (virtual)

construction mix, py = —* (see Remark 1 for details). We find the vector-function of prices
k

p = (p1,p2,.-.,Pn) in the process of production. In contrast to it, the vector-function

of prices p° = (p},p3,...,p;) is specified at the outset and reflects (in an indirect and

integrated way) our prescribed properties of construction mixtures. We obtain the vector-
function y = (y1,92,...,¥ys) from (4) and (5); each of its components is the quantity of
construction mix produced by the moment ¢ € [0, 7] expressed in the spatial or mass units.
The square matrices Ry for k = 0,1, ..., & are symmetric and nonnegative by defined. Over
all, the second term in the penalty functional J is to control the increase of finances during
production. Here we control not only the amounts received, but also the rate, acceleration,
and the derivatives up to order p + 1. We introduce a such strict control here only for the
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completeness of the picture; while conducting simulations, we can replace some Ry by the
zero matrices (that is, Ry = Q,, for some k = 0,1,..., ). In the first term of J we also
take into account not only the changes in the states © = (x1, x9, ..., x,) of production, but
also their rates. However, here we cannot neglect the rates as yet due to the mathematical
properties of the proposed model. Finally, we determine the normalization parameters
a € (0,1] and f = 1 — « in the course of simulations, and (-,-) stands for the Euclidean
inner product on R".

We need a closed convex subset ,5 C 4, the set of admissible financial expenses. For
instance,

oo = {u € Y:u(t) >0,t€0,7]},

that is, the cone of nonnegative vector-functions in . (Recall that a vector-function w :
[0, 7] — R™ is called nonnegative whenever all its components are nonnegative functions.)
Let us now state the problem of finding the minima of the penalty functional J on 9,
that is,

J(v) = min J(u). (6)

u€ily9

Theorem 2.2. The penalty functional J has a unique mintmum point on the set Uyp
of admissible financial expenses.

Indeed, the set .5 is convex and closed; consequently, it is weakly closed. The
functional J is convex and continuous, and so by Mazur’s theorem there exists a unique
point v € 4,9 such that (6) holds. Insert this vector function v = v(t), for t € [0, 7], into
(4) instead of u(t), and then insert the result into (5). This yields n (virtual) construction
mixes whose properties are close to those prescribed.
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MATEMATNYECKOE MOJEJIUPOBAHUE COCTABA
CTPOUTEJIBHBIX CMECE C 3AJJAHHBIMU
CBOVICTBAMMA

A.JI. Illecmaxos, I'A. Csupudiwx, M./]. Bymaxosa

[Ipeamoxken MeTOH MAaTEMATHIECKOTO MOJACIHPOBAHMUS COCTABA CTPOUTEIBHBIX CMecei
C 33 JaHHBIMH CBOMicTBaMH. B 0CHOBE METOIa JEXKUT TEOPHUs ONTUMAJIBHOrO YIIPABIECHUS CH-
CTeMaMH YPaBHEHMI JIEOHTHEBCKOTO THUIIA. Y PABHEHUs JIEOHTHEBCKOI'O THUIIA, TIEPBOHAMATIb-
HO BO3HHUKJIA KaK 00OOIEHUsT U3BECTHOH 3KoHOMUYIeCKO# mMomenn B. JleoHTheBa <3arpaThl
— BBIIYCK> C YYETOM 3aIaCOB. 3aTe€M OHHU C YCIeXOM OBbLIH WCIOJb30BAHBI B JIMHAMUYIE-
CKUX U3MEpPeHUsX, IOPOIUB TeM CAMbIM TEOPHIO ONTHUMAJILHBIX U3MepeHuii. Bo BBeqernnn Ha
ONMCATEILHOM YPOBHE 00CYKIAETCA MO0 IpeajiaraeMoil Mmoaeau. s uitocTpanun
HCIIONBb30BAH IPHMEP COCTABIEHN MPOCTeHIMX OeTOHHBIX cMmeceii. B mepsom maparpade
MOJIEJIUPYETCs IIPOLECC IPOU3BOACTBA OAHOTUIIHBIX CTPOMTE/IbHBIX cMeceli (Hanpumep, He-
TOHHBIX CMeCeil) B 3aBHCHMOCTH OT (PUHAHCOBBIX BJIOXKEHMIl. B pesynbrare ompemensiercs
IEeHA eIUHUITHI TPOU3BEIEHHON TPOoAyKI. Bo BToOpoM maparpade 3aKIaIbIBaeTcs OCHOBA
st OYAYINEro MOCTPOEHUS YUCIEHHBIX AJTOPUTMOB, KOHCTPYHPOBAHUS KOMIIJIEKCOB ITPO-
rpaMM ¥ IPOBEIEHNUs BBIYUCIUTEIbHBIX SKCIIEPUMEHTOB. IIoOMHMO 9TOro gaercs o0bsacHeHne
3a/laHHBbIX CBOMCTB CTPOUTEIbHBIX CMeCeil KaK ONTUMAJbHBIX 110 3aTPATaM.

Kmouesve caosa: cucmemv, ACOHMBEBCKO20 MUNG; NPOU3BOICTNEO CMPOUMEALHBIT

cmecet.
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