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We examine the stability issue in the inverse problem of determining a scalar potential
appearing in the stationary Schr�odinger equation in a bounded domain, from a partial
elliptic Dirichlet-to-Neumann map. Namely, the Dirichlet data is imposed on the shadowed
face of the boundary of the domain and the Neumann data is measured on its illuminated
face. We establish a log log stability estimate for the L2-norm (resp. the H−1-norm) of Ht,
for t > 0, and bounded (resp. L2) potentials.
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1. Introduction

1.1. Settings and Main Result

In the present paper Ω is a bounded domain of Rn, n ≥ 3, with C2 boundary Γ. We
denote by ν(x) the outward unit normal to Γ, computed at x ∈ Γ. For ξ ∈ Sn−1 �xed, we
introduce the two following subsets of Γ

Γ±(ξ) = {x ∈ Γ; ±ξ · ν(x) > 0}, (1)

and denote by F (resp. G) an open neighborhood of Γ+(ξ) (resp. Γ−(ξ)) in Γ. In what
follows Γ+(ξ) (resp. Γ−(ξ)) will sometimes be referred to as the ξ-shadowed (resp., ξ-
illuminated) face of Γ. Next, given q ∈ L∞(Ω), real-valued, we consider the unbounded
self-adjoint operator Aq in L

2(Ω), acting on his domain D(Aq) = H1
0 (Ω) ∩H2(Ω), as

Aq = −∆+ q.

We assume throughout the entire text that 0 is in the resolvent set of Aq (i.e. 0 is not in
the spectrum of Aq) and put

Q = {q ∈ L∞(Ω;R); 0 is not an eigenvalue of Aq}.

We establish in Section 2 for any q ∈ Q and g ∈ H−1/2(Γ) that the boundary value problem
(abbreviated to BVP in the sequel){

(−∆+ q)u = 0 in Ω,
u = g on Γ,

(2)
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admits a unique transposition solution u ∈ H∆(Ω) = {w ∈ L2(Ω); ∆w ∈ L2(Ω)} and that
the so-called Dirichlet-to-Neumann (DN in short) map

Λq : g 7→ ∂νu (3)

is a bounded operator from H−1/2(Γ) into H−3/2(Γ). For qj ∈ Q, j = 1, 2, we denote by
uj the solution to (2) where qj is substituted for q. Since u = u1 − u2 satis�es{

(−∆+ q1)u = (q2 − q1)u2 in Ω,
u = 0 on Γ,

and (q2 − q1)u2 ∈ L2(Ω), it holds true that u ∈ D(Aq1). Therefore ∂νu ∈ H1/2(Γ) and

Λq1,q2 = Λq1 − Λq2 ∈ B(H−1/2(Γ), H1/2(Γ)), (4)

hence the operator

Λ̃q1,q2 : g ∈ H−1/2(Γ) ∩ E ′(F ) → Λq1,q2(g)|G, (5)

is bounded from H−1/2(Γ) ∩ E ′(F ), endowed with the norm of H−1/2(Γ), into H1/2(G).

We denote by ∥Λ̃q1,q2∥ the norm of Λ̃q1,q2 in B(H−1/2(Γ) ∩ E ′(F ), H1/2(G)).
In the present paper we examine the stability issue in the inverse problem of

determining the potential q ∈ Q appearing in (2) from the knowledge of Λ̃q0,q, where
q0 is a priori known suitable potential of Q.

Upon denoting by BX the unit ball of any Banach space X, we may now state the
main result of this article as follows.

Theorem 1. For any δ > 0 and t > 0 we may �nd two constants c > 0 and c̃ > 0, both
of them depending only on δ and t, such that we have

∥q1 − q2∥L2(Ω) ≤ c

(
∥Λ̃q1,q2∥+

∣∣∣ln c̃ ∣∣∣ln ∥Λ̃q1,q2∥∣∣∣∣∣∣−t) , (6)

for any q1, q2 ∈ Q ∩ δBL∞(Ω) satisfying (q2 − q1)χΩ ∈ δBHt(Rn), and

∥q1 − q2∥H−1(Ω) ≤ c

(
∥Λ̃q1,q2∥+

∣∣∣ln c̃ ∣∣∣ln ∥Λ̃q1,q2∥∣∣∣∣∣∣−1
)
, (7)

for any q1, q2 ∈ Q ∩ δBL2(Ω).

Let us now brie�y comment on Theorem 1.

Remark 1. (a) We suppose in Theorem 1 that qj, j = 1, 2, are real-valued but it is
not hard to see that the statement can be adapted at the expense of greater technical
di�culties, to the case of complex-valued potentials. Nevertheless, for the sake of clarity,
we shall restrict ourselves to real-valued potentials in the remaining part of this text.
(b) For s > n/2 and ϵ ∈ (0, s−n/2) we recall from the interpolation theorem [1, Theorem
12.4, page 73] that Hn/2+ϵ(Ω) = [Hs(Ω), H−1(Ω)]θ with θ = (s − (n/2 + ϵ))/(s + 1).
Therefore we have

∥q1 − q2∥L∞(Ω) ≤ C(s)∥q1 − q2∥1−θHs(Ω)∥q1 − q2∥θH−1(Ω) ≤ C(s)δ1−θ∥q1 − q2∥θH−1(Ω),
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for any q1, q2 ∈ Q such that q2 ∈ q1 + δBHs(Ω), and some constant C(s) > 0, depending
only on s. From this and (7) then follows that

∥q1 − q2∥L∞(Ω) ≤ c

(
∥Λ̃q1,q2∥+

∣∣∣ln c̃ ∣∣∣ln ∥Λ̃q1,q2∥∣∣∣∣∣∣−1
)θ

. (8)

(c) Fix t ∈ (0,+∞). Then, arguing as in the derivation of (8), we �nd two positive
constants c and c̃ such that the estimate

∥q1 − q2∥L2(Ω) ≤ c

(
∥Λ̃q1,q2∥+

∣∣∣ln c̃ ∣∣∣ln ∥Λ̃q1,q2∥∣∣∣∣∣∣−1
) t

t+1

,

holds uniformly in q1, q2 ∈ Q obeying q2 ∈ q1 + δBHt(Ω). However in the particular case
where ∂Ω is C [t]+1, we point out that the above estimate is weaker than (6).

1.2. State of the Art and Comments

The celebrated inverse problem of determining q from the knowledge of Λq was �rst
proposed (in a slightly di�erent setting) by Calder�on in [2]. The uniqueness issue was
treated by Sylvester and Uhlmann in [3] and a log-type stability estimate was derived by
Alessandrini in [4]. As shown by Mandache in [5], this log-type estimate is optimal.

All the above mentioned results were obtained with the full data, i.e. when
measurements are performed on the whole boundary Γ. Taking the Neumann data on
Γ−(ξ), while the Dirichlet data is imposed on the whole boundary Γ, Bukhgeim and
Uhlmann proved in [6] that partial information of Λq still determines uniquely the
potential. Their result was improved by Kenig, Sj�ostrand and Uhlmann in [7] by measuring
the Dirichlet data on the shadowed face of Γ and the Neumann data on the illuminated
one. Moreover a reconstruction result was derived by Nachman and Street in [8] from the
same data as in [7].

Stability estimates with partial data go back to Heck and Wang's article [9], where the
L∞(Ω)-norm of q is log log stably recovered from Λq with partial Neumann data. The same
type of estimate was derived in [10]. Both papers require that the Dirichlet data be known
on the whole boundary. This constraint was weakened by Caro, Dos Santos Ferreira and
Ruiz in [11]. These authors proved log-log stability of q with respect to a partial DN map
associated with Dirichlet (resp. Neumann) data measured on a neighborhood of ∪ξ∈NΓ−(ξ)
(resp. ∪ξ∈NΓ+(ξ)) where N in a subset of Sn−1. Their result, which is similar to (6), is
established for the Lp-norm, p ∈ (1,+∞), of bounded andW λ,p-potentials q with λ ∈ (0, 1/
p]. Therefore (7) is valid for a wider class of allowable potentials than in [11].

The derivation of Theorem 1 relies on complex geometrical optics (CGO in short)
solutions to (2) and the Carleman inequality established by Bukhgeim and Uhlmann in
[6]. These are the two main ingredients of the analysis carried out in [9]. But in contrast
to [9], we use here the above mentioned Carleman estimate to construct CGO solutions
vanishing on a de�nite part of the boundary Γ.

Notice that usual stability estimates in the inverse problem of determining a potential
from the full DN map are of log type, while they are of log log type for partial data.
Indeed, it turns out that the low frequencies of the Fourier transform of the potential are
bounded uniformly in all directions by the DN map, but that this is no longer the case
with the partial data. This technical issue can be remedied by using the analytic properties
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of the Fourier transform. The additional log in the stability estimate for the potential may
thus be seen as the price to pay for recovering this analytic function by its values in a
subdomain, which is an ill-posed problem.

1.3. Outline

The paper is organized as follows. In Sect. 2 we introduce the transposition solution
associated with the BVP (2) and rigorously de�ne the various DN maps required by the
analysis of the inverse problem. Sect. 3 is devoted to building CGO solutions that vanish
on some part of the boundary Γ. These functions are useful for the proof of Theorem 1,
given in Sect. 4.

2. Transposition Solutions

In this section we de�ne the transposition solution to the BVP associated with suitable
data (f, g), {

(−∆+ q)u = f in Ω,
u = g on Γ,

(9)

which play a pivotal role in the analysis of the inverse problem carried out in this paper.
To this purpose we start by recalling two useful results for the Hilbert space H∆(Ω) =
{u ∈ L2(Ω); ∆u ∈ L2(Ω)} endowed with its natural norm

∥u∥H∆(Ω) =
(
∥u∥2L2(Ω) + ∥∆u∥2L2(Ω)

)1/2
.

The �rst result is the following trace theorem, borrowed from [6, Lemma 1.1].

Lemma 1. For j = 0, 1, the trace map

tju = ∂jνu|Γ, u ∈ D(Ω),

extends to a continuous operator, still denoted by tj, from H∆(Ω) into H
−j−1/2(Γ). Namely,

there exists cj > 0, such that the estimate

∥tju∥H−j−1/2(Γ) ≤ cj∥u∥H∆(Ω),

holds for every u ∈ H∆(Ω).

Let us denote by ⟨·, ·⟩j+1/2, j = 0, 1, the duality pairing between Hj+1/2(Γ) and
H−j−1/2(Γ), where the second argument is conjugated. Then we have the following
generalized Green formula, which can be found in [6, Corollary 1.2].

Lemma 2. Let q be in L∞(Ω). Then, for any u ∈ H∆(Ω) and v ∈ H2(Ω), we have∫
Ω

(∆− q)uvdx =

∫
Ω

u(∆− q)vdx+ ⟨t1u, t0v⟩3/2 − ⟨t0u, t1v⟩1/2.

Let q ∈ Q. By the usual H2-regularity property for elliptic BVPs (see e.g. [1, Theorem
5.4, page 165]), we know that for each f ∈ L2(Ω) and g ∈ H3/2(Γ), there exists a unique
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solution Sq(f, g) ∈ H2(Ω) to (9). Moreover the linear operator Sq is bounded from L2(Ω)×
H3/2(Γ) into H2(Ω), i.e. there exists a constant C > 0 such that we have

∥Sq(f, g)∥H2(Ω) ≤ C
(
∥f∥L2(Ω) + ∥g∥H3/2(Γ)

)
. (10)

For further reference we put Sq,0(f) = Sq(f, 0) and Sq,1(g) = Sq(0, g), so we have Sq(f, g) =
Sq,0(f) + Sq,1(g) from the linearity of Sq.

Next, applying Lemma 2, we get for all (f, g) ∈ L2(Ω) × H3/2(Γ) and v ∈ H =
H1

0 (Ω) ∩H2(Ω) that

−
∫
Γ

g∂νvdσ(x) +

∫
Ω

fvdx =

∫
Ω

u(−∆+ q)vdx, u = Sq(f, g). (11)

In view of the left hand side of (11) we introduce the following continuous anti-linear form
on H

ℓ(v) = −
∫
Γ

g∂νvdσ(x) +

∫
Ω

fvdx, v ∈ H. (12)

In light of (10), the operator L = ℓ ◦ Sq,0 is bounded in L2(Ω). Further, with reference to
(12), we generalize the de�nition of the anti-linear form ℓ to (f, g) ∈ H∗×H−1/2(Γ), upon
setting

ℓ(v) = −⟨g, ∂νv⟩1/2 + ⟨f, v⟩, v ∈ H,

where ⟨·, ·⟩ denotes the duality pairing between H and H∗, conjugate linear in its second
argument. For any h ∈ L2(Ω), L(h) = ℓ (Sq,0(h)) satis�es

|L(h)| ≤ ∥g∥H−1/2(Γ)∥∂νSq,0(h)∥H1/2(Γ)+∥f∥H∗∥Sq,0(h)∥H ≤ C
(
∥g∥H−1/2(Γ) + ∥f∥H∗

)
∥h∥L2(Ω),
(13)

according to (10). Hence L is a continuous anti-linear form on L2(Ω). By Riesz
representation theorem, there is a unique vector Stq(f, g) ∈ L2(Ω) such that we have

−⟨g, ∂νSq,0(h)⟩1/2 + ⟨f,Sq,0(h)⟩ =
∫
Ω

Stq(f, g)hdx, h ∈ L2(Ω).

Bearing in mind that Aq is boundedly invertible in L2(Ω) (since 0 is in the resolvent set
of Aq) and that Sq,0 = A−1

q , we obtain upon taking h = Aqv in above identity, where v is
arbitrary in H, that

−⟨g, ∂νv⟩1/2 + ⟨f, v⟩ =
∫
Ω

Stq(f, g)(−∆+ q)vdx, v ∈ H. (14)

Moreover (13) entails

∥Stq(f, g)∥L2(Ω) ≤ C
(
∥g∥H−1/2(Γ) + ∥f∥H∗

)
. (15)

For each (f, g) ∈ H∗ ×H−1/2(Γ), Stq(f, g) will be referred to as the transposition solution

to the BVP (9). As a matter of fact we deduce from (14) that

(−∆+ q)Stq(f, g) = f in the distributional sense in Ω. (16)
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Let us establish now that the transposition solution Stq(f, g) coincides with the classical

H2(Ω)-solution Sq(f, g) to (9) in the particular case where (f, g) ∈ L2(Ω)×H3/2(Γ).

Proposition 1. For any (f, g) ∈ L2(Ω)×H3/2(Γ) we have Stq(f, g) = Sq(f, g).

Proof. Put u = Stq(f, g). We have u ∈ H∆(Ω) directly from (16) hence t0u ∈ H−1/2(Γ).

Further, given φ ∈ H1/2(Γ), we may �nd v ∈ H such that t1v = φ by the usual extension
theorem (see e.g. [1, Theorem 8.3, p. 39]). Applying Lemma 2 for such a test function v,
we �nd that ∫

Ω

fvdx =

∫
Ω

(−∆+ q)uvdx =

∫
Ω

u(−∆+ q)vdx+ ⟨t0u, φ⟩1/2.

From this and (14), it then follows that
∫
Ω

fvdx =
∫
Ω

fvdx− ⟨g, φ⟩1/2 + ⟨t0u, t1v⟩1/2, which

entails
⟨g − t0u, φ⟩1/2 = 0.

Since the above identity holds for any φ ∈ H1/2(Γ) we obtain that t0u = g and hence
u = g on Γ. This yields the desired result.

2
For g ∈ H−1/2(Γ) we put Stq,1(g) = Stq(0, g). We have Stq,1(g) ∈ H∆(Ω) by (16), with

∥Stq,1(g)∥H∆(Ω) ≤ C
(
1 + ∥q∥L∞(Ω)

)
∥g∥H−1/2(Γ),

from (15). Hence Stq,1 ∈ B(H−1/2(Γ), H∆(Ω)) so we get

Λq = t1 ◦ Stq,1 ∈ B(H−1/2(Γ), H−3/2(Γ)),

with the aid of Lemma 1.
Finally we have Stq(f, g) = Stq(f, 0)+Stq(0, g), by linearity of Stq. Put Stq,0(f) = Stq(f, 0)

and Stq,1(g) = Stq(0, g). Since Stq,0 ∈ B(H∗, H∆(Ω)) and Stq,1 ∈ B(H−1/2(Γ), H∆(Ω)), it
follows from Lemma 1 that

Λq = t1 ◦ Stq,1 ∈ B(H−1/2(Γ), H−3/2(Γ)).

Further, as Stq,1(g) = St0,1(g) + Sq,0(f), with f = −qSt0,1(g), we get that
Λq = Λ0 +Rq,

where the operatorRq

Rq : g 7→ t1Sq,0
(
−qSt0,1(g)

)
∈ H1/2(Γ),

is bounded from H−1/2(Γ) into H1/2(Γ).

Remark 2. Let us denote by Σq the (continuous) DN map

Σq : g ∈ H3/2(Γ) 7→ t1Sq,1(g) ∈ H1/2(Γ).

Then, since q is real-valued, we get from the Green formula that∫
Γ

gΣq(h)dσ(x) =

∫
Γ

Σq(g)hdσ(x), g, h ∈ H3/2(Γ),

which entails that
(
Σ∗
q

)
|H3/2(Γ)

= Σq. On the other hand, we deduce from Lemma 2 that

Σ∗
q = Λq.
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3. CGO Solutions Vanishing on Some Part of the Boundary

In this section we build CGO solutions to the Laplace equation appearing in (2), that
vanish on a prescribed part of the boundary Γ. This is by means of a suitable Carleman
estimate borrowed from [6]. The corresponding result is as follows.

Proposition 2. For δ > 0 �xed, let q ∈ δBL∞(Ω). Let ζ, η ∈ Sn−1 satisfy ζ · η = 0
and �x ϵ > 0 so small that Γϵ− = Γϵ−(ζ) = {x ∈ Γ; ζ · ν(x) < −ϵ} ̸= ∅. Then there exists

τ0 = τ0(δ) > 0, such that for any τ ≥ τ0 we may �nd ψ ∈ L2(Ω) obeying ∥ψ∥L2(Ω) ≤ Cτ−1/2

for some constant C > 0 depending only on δ, Ω and ϵ, and such that the function

u = eτ(ζ+iη)·x(1 + ψ) ∈ H∆(Ω) is solution to the BVP{
(−∆+ q)u = 0 in Ω,
u = 0 on Γϵ−.

Proof. The proof is made of three steps.
Step 1: A Carleman estimate. For notational simplicity we write Γ± instead of Γ±(ζ),
which is de�ned in (1), and recall from [6] that we may �nd two constants τ0 = τ0(δ) > 0
and C = C(δ) > 0 such the estimate

Cτ 2
∫
Ω

e−2τx·ζ |v|2dx+ τ

∫
Γ+

|ζ · ν(x)|e−2τx·ζ |∂νv|2dσ(x) ≤

≤
∫
Ω

e−2τx·ζ |(∆− q)v|2dx+ τ

∫
Γ−

|ζ · ν(x)|e−2τx·ζ |∂νv|2dσ(x),

holds for all τ ≥ τ0 and v ∈ H. Since Γ±(−ζ) = Γ∓(ζ), the above inequality may be
equivalently rewritten as

Cτ 2
∫
Ω

e2τx·ζ |v|2dx+ τ

∫
Γ−

|ζ · ν(x)|e2τx·ζ |∂νv|2dσ(x) ≤ (17)

≤
∫
Ω

e2τx·ζ |(∆− q)v|2dx+ τ

∫
Γ+

|ζ · ν(x)|e2τx·ζ |∂νv|2dσ(x), v ∈ H, τ ≥ τ0.

In view of more compact reformulation of (17) we introduce for each real number τ the
two following scalar products:

(u, v)τ =

∫
Ω

e2τx·ζuvdx in L2(Ω),

and

⟨ϕ, ψ⟩τ,µ,± =

∫
Γ±

µ(x)e2τx·ζϕψdσ(x), where µ(x) = |ζ · ν(x)|, in L2(Γ±).

We denote by L2
τ (Ω) (resp., L

2
τ,µ(Γ±)) the space L

2(Ω) (resp., L2(Γ±)) endowed with the
norm ∥ · ∥τ (resp. ∥ · ∥τ,µ,±) generated by the scalar product (·, ·)τ (resp., ⟨·, ·⟩τ,µ,±). With
these notations, the estimate (17) simply reads

Cτ 2∥v∥2τ + τ∥∂νv∥2τ,µ,− ≤ ∥(∆− q)v∥2τ + τ∥∂νv∥2τ,µ,+, v ∈ H, τ ≥ τ0. (18)
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Step 2: Building suitable transposition solutions. Let us identify L2
0(Ω) = L2(Ω) (resp.,

L2
0,1(Γ±) = L2(Γ±)) with its dual space, so the space dual to L2

τ (Ω) (resp., L
2
τ,µ(Γ±)) can

be identi�ed with L2
−τ (Ω) (resp. L

2
−τ,µ−1(Γ±)). Next we consider the operator

P : v ∈ H 7→ ((∆− q)v, ∂νv|Γ+) ∈ L2
τ (Ω)× L2

τ,µ(Γ+), (19)

which is injective by (17). Therefore, for each (f, g) ∈ L2
−τ (Ω)×L2

−τ,µ−1(Γ−), the following
anti-linear form

ℓ(w1, w2) = (f, v) + ⟨g, ∂νv⟩−, (w1, w2) = Pv, v ∈ H, (20)

where (·, ·) (resp., ⟨·, ·⟩±) denotes the usual scalar product in L2(Ω) (resp., L2(Γ±)), is well
de�ned on Ran(P ). Moreover it holds true for every (w1, w2) = Pv, where v is arbitrary
in H, that

|ℓ(w1, w2)| ≤ ∥f∥−τ∥v∥τ + ∥g∥−τ,µ−1,−∥∂νv∥τ,µ,− (21)

≤
(
τ−1∥f∥−τ + τ−1/2∥g∥−τ,µ−1,−

) (
τ 2∥v∥2τ + τ∥∂νv∥2τ,µ,−

)1/2
.

Thus, upon equipping the space L2
τ (Ω) × L2

τ,µ(Γ+) with the norm |∥(w1, w2)∥|τ =(
∥w1∥2τ + τ∥w2∥2τ,µ,+

)1/2
, we derive from (18) and (21) that

|ℓ(w1, w2)| ≤ C
(
τ−1∥f∥−τ + τ−1/2∥g∥−τ,µ−1,−

) (
∥(∆− q)v∥2τ + τ∥∂νv∥2τ,µ,+

)1/2
≤ C

(
τ−1∥f∥−τ + τ−1/2∥g∥−τ,µ−1,−

)
|∥Pv∥|τ ,

for some constant C > 0 depending only on δ. As a consequence we have

|ℓ(w1, w2)| ≤ C
(
τ−1∥f∥−τ + τ−1/2∥g∥−τ,µ−1,−

)
|∥(w1, w2)∥|τ , (w1, w2) ∈ Ran(P ). (22)

Let us identify the dual space of L2
τ (Ω) × L2

τ,µ(Γ+) with L
2
−τ (Ω) × L2

−τ,µ−1(Γ+) endowed

with the norm |∥(w1, w2)∥|−τ =
(
∥w1∥2−τ + τ−1∥w2∥2−τ,µ−1,+

)1/2
. Thus, with reference to

(19)-(20), we deduce from (22), upon applying Hahn�Banach extension theorem, that
there exists (v1, v2) ∈ L2

−τ (Ω)× L2
−τ,µ−1(Γ+) obeying

|∥(v1, v2)∥|−τ ≤ C
(
τ−1∥f∥−τ + τ−1/2∥g∥−τ,µ−1,−

)
, (23)

where C > 0 is the same as in the right hand side of (22), such that we have

(v1, (∆− q)v) + ⟨v2, ∂νv⟩+ = (f, v) + ⟨g, ∂νv⟩−, v ∈ H.

Bearing in mind that f ∈ H∗ and gχΓ−−v2χΓ+ ∈ H−1/2(Γ), where χΓ± is the characteristic
function of Γ± in Γ, the above identity reads

⟨(−f), v⟩ − ⟨gχΓ− − v2χΓ+ , ∂νv⟩1/2 =
∫
Ω

v1(−∆+ q)vdx, v ∈ H.

Therefore, by (14), v1 is the transposition solution to the following IBVP:{
(−∆+ q)v1 = −f in Ω,
v1 = gχΓ− − v2χΓ+ on Γ.

(24)
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Step 3: End of the proof. Set ρ = τ(ζ + iη). The last step of the proof involves picking

φ ∈ D(Rn; [0, 1]) such that φ(x) = 1 for x ∈ Γϵ− and supp(φ) ∩ Γ ⊂ Γ
ϵ/2
− , and considering

the transposition solution v1 to the BVP (24) associated with f = qeρ·x and g = −φeρ·x.
Thus, putting ψ = e−ρ·xv1, we derive from (23) that

∥ψ∥0 = ∥v1∥−τ ≤ C
(
τ−1∥qeρ·x∥−τ + τ−1/2∥φeρ·x∥−τ,µ−1,−

)
≤ Cτ−1/2

(
δτ0δ

−1/2 +
2|Γ−|
ϵ

)
,

where |Γ−| denotes the (n− 1)-dimensional Lebesgue-measure of Γ−. Further, bearing in
mind that ρ·ρ = 0, it is easy to check that u = eρ·x(1+ψ) ∈ H∆(Ω) satis�es (−∆+q)u = 0
in Ω. Finally, since v1 = g on Γ− by (24), we obtain that ψ = −φ = −1 and consequently
that u = 0 on Γϵ−. This proves the desired result.

2

4. Proof of Theorem 1

This section contains the proof of Theorem 1 which consists of a succession of �ve
lemmas.

4.1. A Suitable Set of Fourier Variables

For ϵ > 0 we choose η = η(ϵ) ∈ (0, π/2) so small that(
(1− sin θ)2 + 4 cos2 θ

)1/2
< ϵ, θ ∈ (π/2− η, π/2 + η), (25)

and we de�ne Bϵ as the set of vectors β = (β1, . . . , βn) ∈ Rn with the following spherical
coordinates 

β1 = s cos θ1,

βj = s cos θj

(∏j−1
k=1 sin θk

)
, j = 2, . . . , n− 2,

βn−1 = s sinϕ
(∏n−2

k=1 sin θk
)
,

βn = s cosϕ
(∏n−2

k=1 sin θk
)
,

(26)

where s ∈ (0, 1), θ1 ∈ (π/2 − η, π/2 + η), θ2(0, π/3), θj ∈ (0, π) for j = 3, . . . , n − 2, and
ϕ ∈ (0, 2π). Notice that Bϵ has positive Lebesgue measure in Rn given by:

|Bϵ| =
1∫

0

π/2+η∫
π/2−η

π/3∫
0

π∫
0

. . .

π∫
0

2π∫
0

sn−1

(
n−2∏
k=1

sink θn−1−k

)
dsdθ1 . . . dθn−2dϕ > 0. (27)

For further reference, we now establish the following result.

Lemma 3. Let T be any orthogonal transformation in Rn that maps ξ onto e1 =
(1, 0, . . . , 0). Then for all ϵ > 0 and κ ∈ T ∗Bϵ, there exists ζ ∈ Sn−1 satisfying κ · ζ = 0
and |ζ − ξ| < ϵ.

Proof. Let β = (β1, . . . , βn) ∈ Bϵ be given by (25)-(26). Introduce ζ̃ = (ζ̃1, ζ̃2, 0, . . . , 0),
where

ζ̃1 =
sin θ1(

sin2 θ1 +
cos2 θ1
cos2 θ2

)1/2 , ζ̃2 = −
cos θ1
cos θ2(

sin2 θ1 +
cos2 θ1
cos2 θ2

)1/2 .
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Evidently we have ζ̃ ∈ Sn−1 and β · ζ̃ = 0. Moreover it follows from (25) that

|ζ̃ − e1|2 =
(sin θ1 − 1)2 + cos2 θ1

cos2 θ2

sin2 θ1 +
cos2 θ1
cos2 θ2

≤ (sin θ1 − 1)2 + 4 cos2 θ1 < ϵ2.

Finally, bearing in mind that κ = T ∗β and e1 = T ξ, we obtain the desired result upon
taking ζ = T ∗ζ̃.

2

4.2. Alessandrini's Identity and Consequence

For ϵ > 0 put F ϵ(ξ) = Γ \ Γϵ−(ξ) and Gϵ(ξ) = Γ \ Γϵ−(−ξ), where Γϵ−(±ξ) is the
same as in Proposition 2. Since F ϵ(ξ) = {x ∈ Γ; ξ · ν(x) ≥ −ϵ} (resp., Gϵ(ξ) = {x ∈
Γ; ξ · ν(x) ≤ ϵ}), it holds true that ∩ϵ>0F

ϵ(ξ) = {x ∈ Γ; ξ · ν(x) ≥ 0} = Γ+(ξ) (resp.,
∩ϵ>0G

ϵ(ξ) = {x ∈ Γ; ξ · ν(x) ≤ 0} = Γ−(ξ)). Thus, from the very de�nitions of F and G,
we may choose ϵ0 = ϵ0(ξ, F,G) > 0 so small that

F 2ϵ(ξ) ⊂ F and G2ϵ(ξ) ⊂ G, ϵ ∈ (0, ϵ0]. (28)

Having said that we turn now to proving the following statement.

Lemma 4. Let T be the same as in Lemma 3, let τ ∈ [τ0,+∞), where τ = τ0(δ) is de�ned
in Proposition 2, and let ϵ ∈ [0, ϵ0). Then, there exists a constant C > 0, depending only

on Ω, δ and ϵ, such that the estimate∣∣∣∣∣∣
∫
Ω

(q2 − q1)e
−iκ·xdx

∣∣∣∣∣∣ ≤ C
(
e2dτ∥Λ̃q1,q2∥+ τ−1/2

)
,

holds uniformly in κ ∈ rT ∗Bϵ and r ∈ (0, 2τ). Here ∥Λ̃q1,q2∥ is the B(H−1/2(Γ) ∩
E ′(F ), H1/2(G))-norm of the operator Λ̃q1,q2 de�ned in (3)�(5), and d = d(Ω) =
maxx∈Ω |x| <∞.

Proof. Fix r ∈ (0, 2τ), κ ∈ rT ∗Bϵ, and let ζ be given by Lemma 3. Pick ℓ ∈ Rn such that
ℓ · κ = ℓ · ζ = 0 (which is possible since n ≥ 3) and |κ+ ℓ|2 = |κ|2 + |ℓ|2 = 4τ 2. Set

ρj = (−1)jτζ − i
κ+ (−1)jℓ

2
, j = 1, 2,

and let uj = eρj ·x(1 + ψj) ∈ H∆(Ω) be de�ned in accordance with Proposition 2, in such
a way that we have {

(−∆+ qj)uj = 0 in Ω,
uj = 0 on Γϵ−((2j − 3)ζ),

(29)

and
∥ψj∥L2(Ω) ≤ Cτ−1/2. (30)

Put u = Stq1,1(t0u2) so we have w = u− u2 = Sq1,0((q1 − q2)u2) ∈ H and

t1w = Λq1(t0u2)− Λq2(t0u2). (31)
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Upon applying the generalized Green formula of Lemma 2 with u = u1 and v = w, we
derive from (29) that ∫

Ω

(q2 − q1)u1u2dx = ⟨t0u1, t1w⟩1/2. (32)

Notice from the second line of (29) that the trace t0u2 (resp., t0u1) is supported in F
ϵ(ζ) =

Γ\Γϵ−(ζ) (resp., Gϵ(ζ) = Γ\Γϵ−(−ζ)), where Γϵ−(±ζ) is de�ned in Proposition 2. Otherwise
stated we have F ϵ(ζ) = {x ∈ Γ; ζ · ν(x) ≥ −ϵ} (resp., Gϵ(ζ) = {x ∈ Γ; ζ · ν(x) ≤ ϵ}) and
hence F ϵ(ζ) ⊂ F 2ϵ(ξ) (resp., Gϵ(ζ) ⊂ G2ϵ(ξ)) since |ζ − ξ| < ϵ. From this and (28) then
follows that supp(t0u2) ⊂ F (resp., supp(t0u1) ⊂ G), which together with (31)-(32) yields∣∣∣∣∣∣

∫
Ω

(q2 − q1)u1u2dx

∣∣∣∣∣∣ ≤ ∥Λ̃q1,q2∥∥t0u1∥H−1/2(Γ)∥t0u2∥H−1/2(Γ). (33)

Moreover, by (29) � (30) and the very de�nition of uj, j = 1, 2, we get that

∥t0uj∥H−1/2(Γ) ≤ cj
(
∥uj∥L2(Ω) + ∥∆uj∥L2(Ω)

)
≤ cj

(
∥uj∥L2(Ω) + ∥qjuj∥L2(Ω)

)
(34)

≤ Cedτ (1 + τ−1/2).

Upon possibly substituting max(1, τ0(δ)) for τ0(δ) (which does obviously not restrict the
generality of the above reasoning) we deduce from (33)-(34) that∣∣∣∣∣∣

∫
Ω

(q2 − q1)u1u2dx

∣∣∣∣∣∣ ≤ Ce2dτ∥Λ̃q1,q2∥. (35)

Now the desired result follows readily from (30) and (35) upon taking into account that
u1u2 = e−iκ·x(1 + ψ1)(1 + ψ2).

2

4.3. Bounding the Fourier Coe�cients

We introduce the function q : Rn → R by setting q = (q2 − q1)χΩ, where χΩ denotes
the characteristic function of Ω in Rn. We aim to upper bound the Fourier transform q̂ of
q, on the unit ball B of Rn, by means of the following direct generalization of [12, Theorem
4] for complex-valued real-analytic functions.

Theorem 2. Assume that the function F : 2B → C is real-analytic and satis�es the

condition

|∂αF (κ)| ≤ K
|α|!
ρ|α|

, κ ∈ 2B, α ∈ Nn,

for some (K, ρ) ∈ R∗
+ × (0, 1]. Then for any measurable set E ⊂ B with positive Lebesgue

measure, there exist two constants M =M(ρ, |E|) > 0 and θ = θ(ρ, |E|) ∈ (0, 1) such that

we have

∥F∥L∞(B) ≤MK1−θ

 1

|E|

∫
E

|F (κ)|dκ

θ

.

The result is as follows.
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Lemma 5. For all ϵ ∈ (0, ϵ0] there exist two constants C = C(Ω, δ, ϵ) > 0 and θ =
θ(Ω, ϵ) ∈ (0, 1), such that we have

|q̂(κ)| ≤ Ce(1−θ)r
(
edτ∥Λ̃q1,q2∥+ τ−1/2

)θ
, κ ∈ rB, r ∈ (0, 2τ), τ ∈ [τ0,+∞).

Proof. Let τ ∈ [τ0,+∞) and r ∈ (0, 2τ) be �xed. By Lemma 4, we have

|q̂(rκ)| ≤ C
(
e2dτ∥Λ̃q1,q2∥+ τ−1/2

)
, κ ∈ T ∗Bϵ. (36)

In view of (27) we apply Theorem 2 with E = T ∗Bϵ and F (κ) = q̂(rκ) for κ ∈ 2B. Indeed,
in this particular case it holds true for any α = (α1, . . . , αn) ∈ Nn and κ ∈ 2B that

∂αF (κ) =

∫
Ω

q(x)(−ir)|α|
(

n∏
k=1

xαk
k

)
e−irκ·xdx1 . . . dxn,

whence

|∂αF (κ)| ≤ ∥q∥L1(Ω)r
|α|d|α| ≤

(
∥q∥L1(Ω)

r|α|

|α|!

)
|α|!

(d−1)|α|
≤
(
∥q∥L1(Ω)e

r
) |α|!
(d−1)|α|

, (37)

where we recall that d = d(Ω) = maxx∈Ω |x|. Thus, with reference to (36)-(37), we obtain
that

|q̂(rκ)| ≤ Ce(1−θ)r
(
edτ∥Λ̃q1,q2∥+ τ−1/2

)θ
, κ ∈ B, (38)

which immediately yields the result.

2

4.4. Stability Inequalities

We turn now to proving the stability inequalities (6)-(7). We start with (6). For t > 0
�xed, we assume that q ∈ H t(Rn) and put M = ∥q∥Ht(Rn). By Parseval inequality, it holds
true for every r > 0 that

∥q∥2L2(Ω) = ∥q̂∥2L2(Rn) =

∫
|κ|≤r

|q̂(κ)|2dk +
∫

|κ|>r

|q̂(κ)|2dk (39)

≤
∫

|κ|≤r

|q̂(κ)|2dk + 1

r2t

∫
|κ|>r

|(1 + |κ|2)t|q̂(κ)|2dκ ≤
∫

|κ|≤r

|q̂(κ)|2dk + M2

r2t
,

since
∫
Rn

|(1 + |κ|2)t|q̂(κ)|2dκ = ∥q∥2Ht(Ω). From this and Lemma 5 then follows that

∥q∥2L2(Ω) ≤ Crne2(1−θ)r
(
edτ∥Λ̃q1,q2∥+ τ−1/2

)2θ
+
M2

r2t
, r ∈ (0, 2τ), τ ∈ [τ0,+∞). (40)

Let us suppose that
∥Λ̃q1,q2∥ ∈ (0, γ0), (41)

where γ0 = υ(τ0) and υ(τ) = τ−1/2e−dτ for τ ∈ (0,+∞). Notice that γ0 ∈ (0, 1)
since τ0 ∈ [1,+∞). Moreover, υ being a strictly decreasing function on [τ0,+∞), there
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exists a unique τ∗ ∈ (τ0,+∞) satisfying υ(τ∗) = ∥Λ̃q1,q2∥. By elementary computation

we �nd that τ∗ =
(
2
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣− ln τ∗

)
/(2d), which entails τ∗ <

∣∣∣ln ∥Λ̃q1,q2∥∣∣∣, since
τ∗ ∈ (1,+∞) and d ∈ [1,+∞). As a consequence the real number τ∗ is greater than(
2
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣− ln

∣∣∣ln ∥Λ̃q1,q2∥∣∣∣) /(2d), so we get that
τ∗ >

∣∣∣ln ∥Λ̃q1,q2∥∣∣∣
2d

, (42)

upon recalling that lnx < x for all x ∈ (0,+∞). Further, taking τ = τ∗ in (40) we obtain
for each r ∈ (0, 2τ∗) that ∥q∥2L2(Ω) ≤ C22θrne2rτ−θ∗ +M2/r2t ≤ C ′e(n+2)r(2dτ∗)

−θ+M2/r2t,

where C ′ = C23θdθ. This and (42) entail

∥q∥2L2(Ω) ≤ C ′e(n+2)r
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣−θ + M2

r2t
, r ∈ (0, 2τ∗). (43)

The next step of the derivation involves �nding r∗ ∈ (0, 2τ∗) such that both terms

C ′e(n+2)r∗

∣∣∣ln ∥Λ̃q1,q2∥∣∣∣−θ and M2/r2t∗ appearing in the right hand side of (43) are equal.

This can be achieved upon assuming in addition to (41) that ∥Λ̃q1,q2∥ ∈ (0, γ1), where

γ1 = e
−
(

M2

(n+2)C′

) 1
1+2t−θ

, in such a way that we have

(n+ 2)
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣1+2t−θ

≥ M2

C ′ . (44)

Indeed, we see from (42) that the function ιd : r 7→ (dr)2te(n+2)dr satis�es

ιd(2τ∗) >
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣2t e(n+2)|ln ∥Λ̃q1,q2∥| >

∣∣∣ln ∥Λ̃q1,q2∥∣∣∣2t + (n+ 2)
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣1+2t

,

and hence ιd(2τ∗) > (M2/C ′)
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣θ according to (44). Thus there exists r∗ ∈ (0, 2τ∗)

such that we have ιd(r∗) = (M2/C ′)
∣∣∣ln ∥Λ̃q1,q2∥∣∣∣θ. This entails that (2t + n + 2)dr∗ ≥

2t ln(dr∗) + (n + 2)dr∗ is greater that ln

(
(M2/C ′)

∣∣∣ln ∥Λ̃q1,q2∥∣∣∣θ), which combined with

the estimate ∥q∥2L2(Ω) ≤ 2M2/r2t∗ , yields

∥q∥L2(Ω) ≤ 2M

(
2t+ n+ 2

θ

)t ∣∣∣∣∣ln
((

M2

C ′

)1/θ ∣∣∣ln ∥Λ̃q1,q2∥∣∣∣
)∣∣∣∣∣

−t

. (45)

Summing up, we obtain (6) with c = 2M((2t + n + 2)/θ)t and c̃ = (M2/C ′)1/θ provided

∥Λ̃q1,q2∥ is smaller that γ = minj=0,1 γj.

On the other hand, in the particular case where ∥Λ̃q1,q2∥ ≥ γ, we have ∥q∥L2(Ω) ≤ (M/

γ)∥Λ̃q1,q2∥. Putting this together with (45) we end up getting (6) upon possibly enlarging
c.
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Finally, we obtain (7) by arguing as in the derivation of (6) upon preliminarily
substituting the estimate

∥q∥H−1(Ω) =

∫
|κ|≤r

|(1 + |κ|2)−1|q̂(κ)|2dκ+

∫
|κ|>r

|(1 + |κ|2)−1|q̂(κ)|2dκ ≤

≤
∫

|κ|≤r

|q̂(κ)|2dκ+
1

r2

∫
|κ|>r

|q̂(κ)|2dκ ≤
∫

|κ|≤r

|q̂(κ)|2dκ+
M2

r2

for (39). This completes the proof of Theorem 2.

5. Application to Conductivity Problem

In this section we examine the stability issue in the inverse problem of determining
the conductivity coe�cient σ appearing in the system{

−div(σ∇u) = f in Ω,
u = g on Γ,

(46)

from the partial DN map. The strategy is to link this inverse problem to the one studied in
the �rst four sections of this paper and then apply Theorem 1 in order to derive a suitable
stability estimate for σ.

Assume that σ ∈ W 1,∞
+ (Ω) = {c ∈ W 1,∞(Ω;R); c(x) ≥ c0 for some c0 > 0}. Then for

any (f, g) ∈ L2(Ω)×H3/2(Γ), we know from the standard elliptic theory that (46) admits
a unique solution Sσ(f, g) ∈ H2(Ω), and that the linear operator

Sσ : (f, g) ∈ L2(Ω)×H3/2(Γ) 7→ Sσ(f, g) ∈ H2(Ω)

is bounded. In the more general case where (f, g) ∈ H∗ ×H−1/2(Γ), we obtain by arguing
in the exact same way as in Section 2 that there exists a unique u ∈ L2(Ω) obeying

−
∫
Ω

udiv(σ∇v)dx = ⟨f, v⟩ − ⟨g, σ∂νv⟩1/2, v ∈ H. (47)

Such a function u will be referred to as the transposition solution of (46) and will be
denoted by Stσ(f, g).

Let us introduce the Hilbert space Hdiv(σ∇)(Ω) = {u ∈ L2(Ω), div(σ∇u) ∈ L2(Ω)},

endowed with the norm ∥u∥Hdiv(σ∇)(Ω) =
(
∥u∥2L2(Ω) + ∥div(σ∇u)∥2L2(Ω)

)1/2
. By a slight

modi�cation of the proof of Lemma 1 (e.g. [6]), the trace map

tσj u = σj∂jνu|Γ, u ∈ D(Ω), j = 0, 1,

is extended to a linear continuous operator, still denoted by tσj , from Hdiv(σ∇)(Ω) into

H−j−1/2(Γ). Thus, bearing in mind that St(0, g) ∈ H∆(Ω) for g ∈ H−1/2(Γ), we see that
the DN map

Λσ : g ∈ H−1/2(Γ) 7→ tσ1St(0, g) ∈ H−3/2(Γ),

is a bounded operator.
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Assume that σ ∈ W 2,∞
+ (Ω) = W 2,∞(Ω) ∩W 1,∞

+ (Ω). Taking into account that

−div
(
σ∇(σ−1/2v)

)
= σ1/2

(
−∆v + σ−1/2(∆σ1/2)v

)
, v ∈ H,

we get upon substituting (0, σ−1/2v) for (f, v) in (47), that∫
Ω

σ1/2u(−∆v + qσv)dx = −⟨σ1/2g, ∂νv⟩, v ∈ H,

where qσ = σ−1/2∆σ1/2. As a consequence we have σ1/2Stσ(0, g) = Stqσ(0, σ
1/2g), and hence

σ1/2Stσ(0, σ−1/2g) = Stqσ(0, g).

From this and the identity t1(σ
1/2w) = σ−1/2tσ1w+ 1

2
σ−1/2(∂νσ)t0w, which is valid for every

w ∈ H2(Ω), and generalizes to w ∈ Hdiv(σ∇)(Ω) by duality, we get that

Λqσ =
1

2
σ−1(∂νσ)I + σ−1/2Λσσ

−1/2. (48)

Now pick σ1, σ2 ∈ W 2,∞
+ (Ω) such that σ1 = σ2 on Γ and ∂νσ1 = ∂νσ2 on F . Thus,

putting qj = qσj for j = 1, 2, we deduce from (48) that

(Λq1 − Λq2)(g) = σ
−1/2
1 (Λσ1 − Λσ2)(σ

−1/2
1 g), g ∈ H−1/2(Γ) ∩ E ′(F ). (49)

Let us next introduce

Λ̃σ1,σ2 : g ∈ H−1/2(Γ) ∩ E ′(F ) 7→ (Λσ1 − Λσ2)(g)|G ∈ H1/2(G).

We notice from (49) that

Λ̃q1,q2g = σ
−1/2
1 Λ̃σ1,σ2(σ

−1/2
1 g),

for every g ∈ H−1/2(Γ)∩ E ′(F ), provided σ1 = σ2 on Γ and ∂νσ1 = ∂νσ2 on F ∩G. In this
case, we may �nd a constant C > 0, such that we have

∥Λ̃q1,q2∥ ≤ C∥Λ̃σ1,σ2∥, (50)

where ∥ · ∥ still denotes the norm of B(H−1/2(Γ)∩E ′(F ), H1/2(G)). Here we used the fact

that the multiplier by σ
−1/2
1 is an isomorphism of H±1/2(Γ).

Finally, taking into account that ϕ = σ
1/2
1 − σ

1/2
2 is solution to the system{

(−∆+ q1)ϕ = σ
1/2
2 (q2 − q1) in Ω

ϕ = 0 on Γ,

we get ∥ϕ∥L2(Ω) ≤ C∥q2− q1∥H−1(Ω) upon taking f = σ
1/2
2 (q2− q1) and g = 0 in (15). Thus,

applying Theorem 1 and recalling (50), we obtain the:

Corollary 1. Let F and G be the same as in section 1, and let δ > 0 and σ0 > 0. Then
for any σj ∈ δBW 2,∞(Ω), j = 1, 2, obeying σj ≥ σ0 and the condition

σ1 = σ2 on Γ and ∂νσ1 = ∂νσ2 on F ∩G, (51)
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we may �nd a constant C > 0, independent of σ1 and σ2, such that we have:

∥σ1 − σ2∥L2(Ω) ≤ C

(
∥Λ̃σ1,σ2∥+

∣∣∣ln C̃ ∣∣∣ln ∥Λ̃σ1,σ2∥∣∣∣∣∣∣−1
)
.

Remark 3. It is not clear how to weaken assumption (51) in Corollary 1. Indeed, to our
knowledge, the best available result in the mathematical literature (this is a byproduct of
[13, Theorem 2.2, p. 922 and Theorem 2.4, p. 923]) on the recovery of the conductivity at
the boundary, claims for any non empty open subset Γ0 of Γ, and for all σm, m = 1, 2,
taken as in Corollary 1 and satisfying the condition supp (σ1 − σ2)|Γ ⊂ Γ0 instead of (51),
that

∥∂jνσ1 − ∂jνσ2∥L∞(Γ) ≤ C∥Λ0
σ1,σ2

∥1/(1+j), j = 0, 1.

Here Λ0
σ1,σ2

denotes the operator g ∈ H−1/2(Γ) ∩ E ′(Γ0) 7→ (Λσ1 − Λσ2)(g)|Γ0 ∈ H1/2(Γ0),

∥Λ0
σ1,σ2

∥ is the norm of Λ0
σ1,σ2

in B(H−1/2(Γ) ∩ E ′(Γ0), H
1/2(Γ0)) and C > 0 is a constant

that depends neither on σ1 nor σ2.
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ДВОЙНАЯ ЛОГАРИФМИЧЕСКАЯ УСТОЙЧИВОСТЬ 
В ИДЕНТИФИКАЦИИ СКАЛЯРНОГО ПОТЕНЦИАЛА 
ПО ЧАСТИЧНОЙ ЭЛЛИПТИЧЕСКОЙ 
КАРТЕ ДИРИХЛЕ - НЕЙМАНА 
М. Чулли, Я. Киан, Э. Соккорси 

Исследуется вопрос устойчивости решения обратной задачи определения скаляр­
ного потенциала, возникающего в стационарном уравнении Шредингера в ограничен­
ной области по частичной эллиптической карте Дирихле - Неймана. А именно, условия 
Дирихле ставятся на затененной части границы области и условия Неймана - на ее 
освещенной части. Установлена оценка устойчивости типа loglog для L2-нормы (соотв. 
H^1 нормы) для H*, при t > 0 и ограниченых (соотв. L2) потенциалов. 

Ключевые слова: обратная задача; устойчивость; уравнение Шредингера. 
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