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We examine the stability issue in the inverse problem of determining a scalar potential
appearing in the stationary Schrddinger equation in a bounded domain, from a partial
elliptic Dirichlet-to-Neumann map. Namely, the Dirichlet data is imposed on the shadowed
face of the boundary of the domain and the Neumann data is measured on its illuminated
face. We establish a log log stability estimate for the L?-norm (resp. the H ~!-norm) of H?,
for t > 0, and bounded (resp. L?) potentials.
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1. Introduction
1.1. Settings and Main Result

In the present paper € is a bounded domain of R™, n > 3, with C* boundary I". We
denote by v(x) the outward unit normal to I', computed at x € I'. For £ € S"~! fixed, we
introduce the two following subsets of I'

PL(6) = {z € T5 £€- v(x) > 0}, 1)

and denote by F' (resp. G) an open neighborhood of I'; (§) (resp. I'_(£)) in I'. In what
follows I'; (&) (resp. I'_(&)) will sometimes be referred to as the -shadowed (resp., &-
illuminated) face of I'. Next, given ¢ € L*(Q2), real-valued, we consider the unbounded
self-adjoint operator A, in L*(Q2), acting on his domain D(A,) = H}(Q) N H*(Q), as

A, =—-A+q.

We assume throughout the entire text that 0 is in the resolvent set of A, (i.e. 0 is not in
the spectrum of A,) and put

Q = {q € L>=(;R); 0is not an eigenvalue of A,}.

We establish in Section 2 for any ¢ € Q and g € H~/2(I) that the boundary value problem
(abbreviated to BVP in the sequel)

(2)
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admits a unique transposition solution u € HA(Q)) = {w € L?(Q); Aw € L*(Q)} and that
the so-called Dirichlet-to-Neumann (DN in short) map

Ay:g—= 0Oyu (3)

is a bounded operator from H~Y2(T") into H=3/*(T"). For ¢; € Q, j = 1,2, we denote by
u; the solution to (2) where g; is substituted for ¢. Since u = u; — uy satisfies

(—A 4+ q)u= (g2 — q1)us in £,
u =0 on I,

and (g — q1)up € L*(9), it holds true that u € D(A,,). Therefore d,u € H/*(') and

Apas = Ny — Dy, € BHVAT), HY(D)), (4)

hence the operator

Aql,qz VIS H_l/Z(F) N 5/(F) - Aqhqz (g)|G7 (5)

is bounded from H~/2(I') N &'(F), endowed with the norm of H~/(I), into HY?(Q).
We denote by ||Ag, 4| the norm of Ay, 4, in B(HY2() N &' (F), HY*(@G)).

In the present paper we examine the stability issue in the inverse problem of
determining the potential ¢ € Q appearing in (2) from the knowledge of A, 4, where
Qo is a priori known suitable potential of O.

Upon denoting by Bx the unit ball of any Banach space X, we may now state the
main result of this article as follows.

Theorem 1. For any 6 > 0 and t > 0 we may find two constants ¢ > 0 and ¢ > 0, both
of them depending only on 0 and t, such that we have

—t

) ()

for any q1,q2 € QN 0B satisfying (2 — ¢1)xa € B wn), and

). )

lar = @l < o (HAqmn o+ | Ry,

o1 =l < ¢ (IRl + i 1o

for any q1,q2 € QN IBr2(q).
Let us now briefly comment on Theorem 1.

Remark 1. (a) We suppose in Theorem 1 that ¢;, j = 1,2, are real-valued but it is
not hard to see that the statement can be adapted at the expense of greater technical
difficulties, to the case of complex-valued potentials. Nevertheless, for the sake of clarity,
we shall restrict ourselves to real-valued potentials in the remaining part of this text.

(b) For s > n/2 and € € (0,5 —n/2) we recall from the interpolation theorem [1, Theorem
12.4, page 73| that H"/2*<(Q) = [H*(Q), H ()] with = (s — (n/2 + €))/(s + 1).
Therefore we have

g1 — Q2HL°°(Q) <)l — g qu_s?sz)HCh — %H?fl(g) < 0(3)51_9“% - C&H?fl(ﬂ)v
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for any ¢1,q2 € Q such that ¢z € q1 + 0 Bps(q), and some constant C(s) > 0, depending
only on s. From this and (7) then follows that

1\ °?

BE )

(c) Fix t € (0,400). Then, arguing as in the derivation of (8), we find two positive
constants ¢ and ¢ such that the estimate
‘—1) HLI

holds uniformly in ¢,q, € Q obeying ¢o € q1 + 0Byt (). However in the particular case
where 0 is C*1 we point out that the above estimate is weaker than (6).

In HAq1,q2 |

g1 — @@ < c <H/Kq1,q2H + ‘lné

In ||Aq1,q2”

g1 — q2ll20) < ¢ (||Aq1,q2|| + ‘lné

1.2. State of the Art and Comments

The celebrated inverse problem of determining ¢ from the knowledge of A, was first
proposed (in a slightly different setting) by Calderén in [2]. The uniqueness issue was
treated by Sylvester and Uhlmann in [3] and a log-type stability estimate was derived by
Alessandrini in [4]. As shown by Mandache in [5], this log-type estimate is optimal.

All the above mentioned results were obtained with the full data, i.e. when
measurements are performed on the whole boundary I'. Taking the Neumann data on
['_(&£), while the Dirichlet data is imposed on the whole boundary I', Bukhgeim and
Uhlmann proved in [6] that partial information of A, still determines uniquely the
potential. Their result was improved by Kenig, Sjostrand and Uhlmann in [7] by measuring
the Dirichlet data on the shadowed face of I' and the Neumann data on the illuminated
one. Moreover a reconstruction result was derived by Nachman and Street in [8] from the
same data as in [7].

Stability estimates with partial data go back to Heck and Wang’s article [9], where the
L>(2)-norm of ¢ is log log stably recovered from A, with partial Neumann data. The same
type of estimate was derived in [10]. Both papers require that the Dirichlet data be known
on the whole boundary. This constraint was weakened by Caro, Dos Santos Ferreira and
Ruiz in [11]. These authors proved log-log stability of ¢ with respect to a partial DN map
associated with Dirichlet (resp. Neumann) data measured on a neighborhood of UgeyI'_(§)
(resp. UgenD'4(€)) where N in a subset of S"~'. Their result, which is similar to (6), is
established for the LP-norm, p € (1, +00), of bounded and W*P-potentials ¢ with A € (0, 1/
p|. Therefore (7) is valid for a wider class of allowable potentials than in [11].

The derivation of Theorem 1 relies on complex geometrical optics (CGO in short)
solutions to (2) and the Carleman inequality established by Bukhgeim and Uhlmann in
[6]. These are the two main ingredients of the analysis carried out in [9]. But in contrast
to [9], we use here the above mentioned Carleman estimate to construct CGO solutions
vanishing on a definite part of the boundary I'.

Notice that usual stability estimates in the inverse problem of determining a potential
from the full DN map are of log type, while they are of log log type for partial data.
Indeed, it turns out that the low frequencies of the Fourier transform of the potential are
bounded uniformly in all directions by the DN map, but that this is no longer the case
with the partial data. This technical issue can be remedied by using the analytic properties
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of the Fourier transform. The additional log in the stability estimate for the potential may
thus be seen as the price to pay for recovering this analytic function by its values in a
subdomain, which is an ill-posed problem.

1.3. Outline

The paper is organized as follows. In Sect. 2 we introduce the transposition solution
associated with the BVP (2) and rigorously define the various DN maps required by the
analysis of the inverse problem. Sect. 3 is devoted to building CGO solutions that vanish
on some part of the boundary I'. These functions are useful for the proof of Theorem 1,
given in Sect. 4.

2. Transposition Solutions

In this section we define the transposition solution to the BVP associated with suitable

data (f,g), .
{ (A +qu=f inQ, (9)

u=gqg on I’

which play a pivotal role in the analysis of the inverse problem carried out in this paper.
To this purpose we start by recalling two useful results for the Hilbert space Ha(£2) =
{ue L*(Q); Au e L*(Q)} endowed with its natural norm

1/2
lulliagey = (lula@ + 1 AulZaq)

The first result is the following trace theorem, borrowed from |6, Lemma 1.1].

Lemma 1. For j = 0,1, the trace map
tju = 8zU|F, u < @(ﬁ),

extends to a continuous operator, still denoted by t;, from Ha(Q) into H=7=Y2(T). Namely,
there ewists ¢; > 0, such that the estimate

[t 5ull =12y < ¢jllull mace),
holds for every u € Ha(2).

Let us denote by (-,-)j41/2, j = 0,1, the duality pairing between H7*/*(I') and
H=7Y2("), where the second argument is conjugated. Then we have the following
generalized Green formula, which can be found in [6, Corollary 1.2].

Lemma 2. Let q be in L=(Q). Then, for any u € HA(Q) and v € H*(Q), we have
/(A — q)uvdx = /u(A — q)vdz + (tiu, tov)s/2 — (tou, t1v)1/2.
Q 9)

Let ¢ € Q. By the usual H?-regularity property for elliptic BVPs (see e.g. [1, Theorem
5.4, page 165|), we know that for each f € L?(Q) and g € H%?(T"), there exists a unique
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solution S,(f,g) € H*(2) to (9). Moreover the linear operator S, is bounded from L?(£2) x
H?2(T) into H%(f2), i.e. there exists a constant C' > 0 such that we have

1So(f, D2y < C (120 + 19l e qry) - (10)

For further reference we put S, o(f) = S,(f,0) and S,1(g9) = S,(0, g), so we have S,(f, g) =
Syo(f) + Sya(g) from the linearity of S,.

Next, applying Lemma 2, we get for all (f,g) € L*(Q) x H3?>(T) and v € H =
H}(Q) N H?(Q) that

/ga odo (o /fvdx—/ (A + q)vdz, u=3S,(f,9). (11)

r

In view of the left hand side of (11) we introduce the following continuous anti-linear form
on H

l(v) = /g(? vdo(x /f@dx veH. (12)
T
In light of (10), the operator L = £ 0 S, is bounded in L*(Q). Further, with reference to
(12), we generalize the definition of the anti-linear form ¢ to (f, g) € H* x H~*/?(I"), upon
setting
l(v) = —(g,0,v)1/2 + (f,v), veEH,

where (-, -) denotes the duality pairing between H and H*, conjugate linear in its second
argument. For any h € L*(Q), L(h) = £(S,0(h)) satisfies

LA < Ngllir-1720) 190 Sqi0 (Bl 172y + 1 f = S0 (W) 13 < C (gl 1720y + [1.fll3e-) Hh(Hm)(Q)
13

according to (10). Hence L is a continuous anti-linear form on L*(). By Riesz

representation theorem, there is a unique vector S(f, g) € L*(Q) such that we have

H*

(0, 0Sy0 (M2 + (s Suo(h)) = / S, g)de, he I(9).
Q

Bearing in mind that A, is boundedly invertible in L*(Q) (since 0 is in the resolvent set
of A;) and that S, = Aq_l, we obtain upon taking h = A,v in above identity, where v is
arbitrary in H, that

(g, B)ays + (fo0) = / SH 9 (A T Quda, veH, (14)

Moreover (13) entails

1S5(f- D2y < C (Igllz-1r2qr) ) - (15)

For each (f,g) € H* x H7/2(T"), Sk(f,g) will be referred to as the transposition solution
to the BVP (9). As a matter of fact we deduce from (14) that

(—A+q)S;(f,9) = [ in the distributional sense in Q. (16)
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Let us establish now that the transposition solution S;(f, g) coincides with the classical
H?(Q)-solution S,(f,g) to (9) in the particular case where (f,g) € L*(Q) x H3?(T).

Proposition 1. For any (f,g) € L*(Q) x H¥*(T') we have S.(f,g) = Sy(f.9).

Proof. Put u = Si(f,g). We have u € Ha() directly from (16) hence tou € H~/*(T).
Further, given ¢ € H'/?(T), we may find v € H such that t;v = ¢ by the usual extension
theorem (see e.g. [1, Theorem 8.3, p. 39]). Applying Lemma 2 for such a test function v,
we find that

/f@dx = /(—A + q)uvdx = /u(—A + q)vdzx + (tou, ¥)1 /2.
Q Q )
From this and (14), it then follows that [ fodz = [ fodx — (g, ¢)1/2 + (tou, t1v)1/2, which
) )

entails

(g — tou, p)1/2 = 0.
Since the above identity holds for any ¢ € H'/?(I') we obtain that tou = g and hence
u = g on I'. This yields the desired result.

O
For g € H7'/2(T") we put S!(g) = SL(0, g). We have S!(g) € Ha(2) by (16), with
1551 (g ||HA < C(1+ lldllz=) lglla-120
from (15). Hence 8!, € B(H'/(T'), HA(2)) so we get
Ag=t08!, € BHT), H3*(T)),

with the aid of Lemma 1.

Finally we have S(f,g) = S.(f,0)+S5.(0, g), by linearity of S.. Put S} ,(f) = S.(f,0)
and S} ,(g9) = S.(0,9). Since S!, € B(H*, HA(Q)) and S, € %( “12(T), HA(Q)), it
follows from Lemma 1 that

Ag=t,08!, € BHT),H ).
Further, as S} ;(9) = S§1(9) + Sqo(f), with f = —¢S,(g), we get that
AN, =MNo+ Ry,
where the operator
Ry g9 11840 (—C]S(t),l(g)) € H'*(I),
is bounded from H~'/2(T) into H'/%(T").
Remark 2. Let us denote by 3, the (continuous) DN map
Y, g€ H2(T) — t,8,1(g9) € HV*(T).

Then, since g is real-valued, we get from the Green formula that

[ o) = [ s,odota). g e D)

r I
which entails that (Z*)\Hs/z( = = Y. On the other hand, we deduce from Lemma 2 that
£ = A,
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3. CGO Solutions Vanishing on Some Part of the Boundary

In this section we build CGO solutions to the Laplace equation appearing in (2), that
vanish on a prescribed part of the boundary I'. This is by means of a suitable Carleman
estimate borrowed from [6]. The corresponding result is as follows.

Proposition 2. For § > 0 fized, let ¢ € dBr~(q). Let (,n € S" ' satisfy (-n =0
and fix € > 0 so small that T =T (() ={z €T; (-v(z) < —€} # 0. Then there exists
To = T0() > 0, such that for any T > 7o we may find 1 € L*(Q) obeying ||¢| 120y < CT71/2
for some constant C' > 0 depending only on 0, 0 and €, and such that the function
u = e CHMT(1 4 9h) € Ha(Q) is solution to the BVP

(—A4+q@u=0 in Q,
u=0~0 on I'°.

Proof. The proof is made of three steps.

Step 1: A Carleman estimate. For notational simplicity we write I'y instead of T'L((),
which is defined in (1), and recall from [6] that we may find two constants 7o = 70(d) > 0
and C'= C(9) > 0 such the estimate

O / ey Pl + 7 / € - v(@)]e=2¢ |9, 0]2do (x) <
Q r,

< / 27| (A — qofPde + / € vla)|e 20,02 do (@),
(9] T_

holds for all 7 > 75 and v € H. Since I'y(—() = I'+((), the above inequality may be
equivalently rewritten as

CTQ/ e ol de 4 7 / € v()|e*™|d,v[*do(z) < (17)
Q r_—
< /62”'4](A — q)v[*dz + 7'/ € v(@)|e™ |0, do(z), vEH, T > 1.
Q Iy

In view of more compact reformulation of (17) we introduce for each real number 7 the
two following scalar products:

(u,v); = /eQTI'Cude in L*(Q),
Q

and
(6, V)rp = /M(m)em%wd@'(%), where pu(z) = |¢ - v(z)], in L*(T'4).
s
We denote by L2(Q) (resp., L2 ,(I'+)) the space L*(Q) (resp., L*(I'+)) endowed with the

norm || - || (resp. || - ||r.+) generated by the scalar product (-,-), (resp., (-, )r,+). With
these notations, the estimate (17) simply reads

Cr2[oll7 + 7l10u0ll7,. - < A = @vllZ +7llO]2, 4 vEH, T2 7. (18)
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Step 2: Building suitable transposition solutions. Let us identify L3(Q) = L*(Q) (resp.,
L5, (T+) = L*(T'y)) with its dual space, so the space dual to L7(2) (resp., L ,(T'+)) can
be identified with L2 (Q) (resp. L? _, 1(T'+)). Next we consider the operator

P:veHr (A—qvdur,) € L2(Q) x L?,M(H), (19)

which is injective by (17). Therefore, for each (f,g) € L2 () x L? _
anti-linear form

,—1(I'2), the following

(wy,we) = (f,v) + (g,0,v)_, (wy,wy) = Pv, veEH, (20)

where (-, -) (resp., (-, )+) denotes the usual scalar product in L*(Q) (resp., L*(T'y)), is well
defined on Ran(P). Moreover it holds true for every (wy,ws) = Pv, where v is arbitrary
in ‘H, that
[y, wo)| < fll=llolls + gl -7 -2 = 10007, - (21)
_ _ 1/2
< (U TGl o) (PPN 7O, -)

A

Thus, upon equipping the space LZ(Q) x L2 (I'y) with the norm |[||(wy, ws)ll; =

([Jwr ]2 +T||w2|\3’#,+)1/2, we derive from (18) and (21) that

) ) 1/2
(wi,ws)| < C (Tl + 72 gl et 2) (1A = Qo) + 71|02, 1)
< C (T lr + 729l ) NP0

for some constant C' > 0 depending only on . As a consequence we have
[e(wi, w)| < C (77| fll—r + 772l -1, 2) [ (w1, w) [, (wn,w2) € Ran(P).  (22)

Let us identify the dual space of L2(Q) x L (T'y) with L? () x L2 _,(T';) endowed

S
with the norm ||| (w1, ws)|||=r = ([Jw]|®, +7"1||w2||2_7,u_17+)1/2. Thus, with reference to

(19)-(20), we deduce from (22), upon applying Hahn—Banach extension theorem, that

there exists (v1,v9) € L2 (Q) x L2 (I'y) obeying

(or, )l < C (T I lr + 772l gl —rpem2.-) (23)
where C' > 0 is the same as in the right hand side of (22), such that we have
(Ula (A - Q)U) + <U2781/U>+ = (f,l)) + <g,ayU>—, vEH.

Bearing in mind that f € H* and gxr_—wvoxr, € H Y/?(I'), where xr, is the characteristic
function of 'y in I, the above identity reads

(=f),v) = {gxr_ — UQXF+78VU>1/2 = /m(—A + q)vdzx, v € H.
Q

Therefore, by (14), v; is the transposition solution to the following IBVP:

{ (A4 qvy =—f inQ, (24)

vy = gxr_ —ve2xr, onl.
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Step 3: End of the proof. Set p = 7(¢ + in). The last step of the proof involves picking
© € 2(R™;[0,1]) such that ¢(x) = 1 for x € T and supp(¢) NI C I'’? and considering
the transposition solution v; to the BVP (24) associated with f = ¢e””* and g = —pe? .
Thus, putting ¢ = e vy, we derive from (23) that

[llo = lloll-r < C (77 Mlge?®||-r + 772 [l e[| .-
< 07_71/2 (57_051/2 + 2|F—’) ’

€
where |I'_| denotes the (n — 1)-dimensional Lebesgue-measure of I'_. Further, bearing in
mind that p-p = 0, it is easy to check that u = e”*(1+1) € Ha () satisfies (—A+q)u =0
in . Finally, since v; = g on I'_ by (24), we obtain that ) = —p = —1 and consequently
that w = 0 on I'° . This proves the desired result.
O

4. Proof of Theorem 1

This section contains the proof of Theorem 1 which consists of a succession of five
lemmas.

4.1. A Suitable Set of Fourier Variables
For € > 0 we choose n = n(e) € (0,7/2) so small that

((1 — sin6)? + 4 cos? 9)1/2 <€ Oe(n/2—nm/2+n), (25)

and we define B, as the set of vectors 5 = (f1,...,3,) € R" with the following spherical

coordinates
o5t = scosb,

B; = scosb; <Hi;llsin0k),j:2,...,n—2,
Pno1 = ssing (HZ;% sin 9/6) )
Bn = scoso (HZ;? sin6y)

where s € (0,1), 6, € (7/2 —n,7/2+ 1), 0:(0,7/3), ; € (0,7) for j =3,...,n— 2, and
¢ € (0,27). Notice that B, has positive Lebesgue measure in R" given by:

(26)

1 ©/24n7/3 = T 27

si- [ [ / / / / (He) dsdbs...dbodd >0, (20)

0 w/2—n
For further reference, we now establish the following result.

Lemma 3. Let T be any orthogonal transformation in R™ that maps £ onto e; =
(1,0,...,0). Then for all € > 0 and k € T*B,, there exists ( € S* satisfying k- = 0
and |¢ —&| < e.

Proof. Let 8 = (p1,...,08,) € Be be given by (25)-(26). Introduce ¢ = (51,52,0, ..., 0),

where

. 9 cos 01
5 o S vy 5 o cos 02
1= 29 \ /2 2= 2\ /2
cos? 61 cos? 61
(bm 0 + oz 02) (sm 01 + o 92>
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Evidently we have ¢ € S" ! and 8- = 0. Moreover it follows from (25) that

sin @ — 1)2 4 0
( ! ) cos?0z < (sin@; — 1)* + 4cos? 0 < €.

-2 cos? 01
sin® 6 + <5gt o

’5— 61’2 =

Finally, bearing in mind that x = 7*3 and e; = T¢&, we obtain the desired result upon
taking ¢ = T*C.
O

4.2. Alessandrini’s Identity and Consequence

For € > 0 put F¢(§) = T'\ T (&) and G°(§) = T\ T (=¢), where T (££) is the
same as in Proposition 2. Since F(§) = {x € ['; £-v(x) > —€} (resp., G(§) = {z €
[y &-v(x) < €}), it holds true that NesoF (&) = {x € T'; £ -v(x) > 0} =T 1(&) (resp.,
Nes0G(§) ={z € T; € -v(z) <0} =T_(&)). Thus, from the very definitions of F' and G,
we may choose €y = €(&, F, G) > 0 so small that

F?(¢) C F and G*(&) C G, € € (0, ¢). (28)

Having said that we turn now to proving the following statement.

Lemma 4. Let T be the same as in Lemma 3, let T € [19, +00), where T = 10(0) is defined
in Proposition 2, and let € € [0,¢€q). Then, there exists a constant C > 0, depending only
on 2, 6 and €, such that the estimate

[ - we ] < 0 (Rl + 7).
Q

holds uniformly in k € rT*Be and r € (0,27). Here [Ag .ol is the B(HY2T) N
&'(F), HY2(G))-norm of the operator N, 4, defined in (3)-(5), and d = d(Q) =

max,.q |z| < oo.

Proof. Fix r € (0,27), k € rT*B., and let ¢ be given by Lemma 3. Pick £ € R" such that
(-r=1{-(=0 (which is possible since n > 3) and |k + {|> = |s|* + |[{|*> = 472. Set

; —1)7¢
pj = (_1)j7—c - Z#? j = 1727
and let u; = e”*(1 4 1);) € Ha(Q) be defined in accordance with Proposition 2, in such

a way that we have

(—A + q]')le =0 in Q, (29)
u; =0 on I ((25 — 3)¢),
and
1ill 2y < CT712 (30)
Put u = S} (touz) so we have w = u — uy = Sg, o((¢1 — ¢2)u2) € H and
tlw = Atn (toUg) — Aq2 (toU,Q). (31)
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Upon applying the generalized Green formula of Lemma 2 with v = u; and v = W, we
derive from (29) that

/(qz — q1)wugde = (tour, L)1 /2. (32)
Q
Notice from the second line of (29) that the trace tyuy (resp., tou1) is supported in F<(¢) =
LA\ (¢) (resp., G(¢) = I'\I"(—()), where ' (£() is defined in Proposition 2. Otherwise
stated we have ['({) = {x € I'; (- v(x) > —€} (resp., G(() = {x € T'; -v(z) <¢€}) and
hence F¢(¢) C F?(&) (resp., G(¢) C G*(€)) since |¢ — &| < e. From this and (28) then
follows that supp(touz) C F' (resp., supp(tou1) C G), which together with (31)-(32) yields

/(CD — q1)urugdr| < ||Kq1,q2”“tOulHH—l/Q(F)”t0u2HH—1/2(I‘)' (33)
Q

Moreover, by (29) — (30) and the very definition of u;, j = 1,2, we get that

ltouill -2y < ¢ (lusllzei) + 1Al 2 ) < ¢ (Jugll) + lgusllee)  (34)
< CetT(1 477V,

Upon possibly substituting max (1, 79(9)) for 74(d) (which does obviously not restrict the
generality of the above reasoning) we deduce from (33)-(34) that

/ (42 — q)uruada| < O Ry . (35)
Q

Now the desired result follows readily from (30) and (35) upon taking into account that
Uiy = e~ (1 + 1) (1 + o).
O

4.3. Bounding the Fourier Coeflicients

We introduce the function ¢ : R” — R by setting ¢ = (¢2 — ¢1)xq, where xqo denotes
the characteristic function of Q in R™. We aim to upper bound the Fourier transform g of
g, on the unit ball B of R™, by means of the following direct generalization of [12, Theorem
4] for complex-valued real-analytic functions.

Theorem 2. Assume that the function F' : 2B — C s real-analytic and satisfies the
condition |
|0°F (k)| < Kﬂ“, Kk € 2B, o € N",
pOé
for some (K, p) € R% x (0,1]. Then for any measurable set E C B with positive Lebesgue
measure, there exist two constants M = M (p,|E]) > 0 and 0 = 0(p, |E|) € (0,1) such that

we have

0
1-6 1
[E ey < MET2 | = | [F(k)]ds
|E]
E
The result is as follows.
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Lemma 5. For all € € (0,¢] there erist two constants C = C(Q,9,¢) > 0 and 0 =
6(2¢) € (0,1), such that we have

~ 0
[G)| < Ce O (| Ry, ull +772) k€ B, 7€ (0,27), T € [, +00).

Proof. Let T € [19,+00) and r € (0,27) be fixed. By Lemma 4, we have
@) < C (1 Rgall +7772) , k€ TB. (36)

In view of (27) we apply Theorem 2 with £ = T*B. and F (k) = q(rr) for k € 2B. Indeed,
in this particular case it holds true for any o = (v, ..., a,) € N” and k € 2B that

0“F (k) = /q(x)(—ir)“' (H xi’“) e Ay L. dry,

Q
whence
|ex] ! |
o ) ] 7l ) r ! ) a!
]8 F(’€)| < ”CIHL o dl < <HQHL (Q)’a“> ( )|a| (HQHL e ) (d71)|a\’ (37)

where we recall that d = d({2) = max, g |2|. Thus, with reference to (36)-(37), we obtain
that

~ 0
@0rs)| < CeOr (R +772) s B, (39)

which immediately yields the result.

4.4. Stability Inequalities

We turn now to proving the stability inequalities (6)-(7). We start with (6). For ¢ > 0
fixed, we assume that ¢ € H*(R") and put M = ||¢|| g¢®n). By Parseval inequality, it holds
true for every r > 0 that

||Q\|%2(Q):||m|i2(mn): / |€7(’f)|2dk+ / |QA(/€)|2dk (39)

|| <r || >r
< [Pt o [ 10+ ePriaePds < [ g+ g
|k|<r || > |k|<r

since f (1 + [£[?)"|g(x)[*d& = [lg]|Z(qy- From this and Lemma 5 then follows that

_ M?
lall3aiey < Cret =0 (| Ryl +7742) " +

r
)
7"2t

€ (0,27),7 € [10,+00).  (40)

Let us suppose that B

HAq17q2” S (0770)’ (41)
where 7y = v(7) and v(7) = 7 Y279 for 7 € (0,+00). Notice that v € (0,1)
since 79 € [1,+00). Moreover, v being a strictly decreasing function on [rp, +00), there
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exists a unique 7, € (79, 4+00) satisfying v(7.) = |[Ag.q ]l By elementary computation
we find that 7. = (2 )lnHK%QQH‘ - 1n7:k> /(2d), which entails 7, < ‘ln||/~\q17q2\| ,

7. € (1,4+00) and d € [1,400). As a consequence the real number 7, is greater than

since

(210 18l = 10 (10 ) R ) /(20), 50 we gt that
0 R .
R 42)

upon recalling that Inx < x for all x € (0,400). Further, taking 7 = 7. in (40) we obtain
for each r € (0,27,) that HqHQLQ(Q) < O2%pne?r 70 4 M2 /r? < C'e™m 2T (2d7,) 70+ M2 /r*,
where C" = C2%d°. This and (42) entail

2

-0 M
_|__

lal22(0) < Ce2r T

€ (0,27,). (43)

Ao

The next step of the derivation involves finding r. € (0,27,) such that both terms
In [|Ag; g
This can be achieved upon assuming in addition to (41) that |[Ag, 4| € (0,71), where

Cle(nJrQ)r*

and M?/r?" appearing in the right hand side of (43) are equal.

1
M2 ) T+2t—0

= 67<("+2>C/ , in such a way that we have

+2t—0 M2
> .
=

(n+2) I R

(44)
Indeed, we see from (42) that the function ¢4 : r +— (dr)?e(" ™2 satisfies
(27 > [ |y

~ - 2t - 142t
n+2)\1n||Aq1vQ2H| > ’hl Mgl +(n+2) ‘ln | Agy g2

~ 9
and hence 14(27.) > (M?/C") |In||Ay, .0, l| according to (44). Thus there exists . € (0, 27)

~ 0
such that we have 4(r,) = (M?/C") |In||[Ay.ll| - This entails that (2t + n + 2)dr. >

2tIn(dr,) + (n + 2)dr. is greater that In ((MQ/C")
the estimate ||q|72o, < 2M?/r¥, yields

In ”Aququ

0
), which combined with

In ((‘W) ‘mHAqu )‘_t. (45)

Summing up, we obtain (6) with ¢ = 2M((2t +n +2)/0)" and ¢ = (M?/C")"/? provided
| Agy.q0|l 1s smaller that v = min;_q 1 ;.

2t—|—n+2)t

2 () < 2M
ooz < 20 (25

On the other hand, in the particular case where || Ay, || > 7, we have ||g|| 2y < (M/

7)||/~\q17q2\|. Putting this together with (45) we end up getting (6) upon possibly enlarging
c.
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Finally, we obtain (7) by arguing as in the derivation of (6) upon preliminarily
substituting the estimate

lalli-r@y = / (14 [#2) 1 G(s) P + / (14 w30 Pdr <
|| <r |k|>r
- 1 . N M?
< [lawpast 5 [ aopdcs [ aeopacs S
|| <r || >r || <r

for (39). This completes the proof of Theorem 2.

5. Application to Conductivity Problem

In this section we examine the stability issue in the inverse problem of determining
the conductivity coefficient o appearing in the system

{ —div(eVu) = f in (46)

u=gq on I
from the partial DN map. The strategy is to link this inverse problem to the one studied in
the first four sections of this paper and then apply Theorem 1 in order to derive a suitable
stability estimate for o.

Assume that o € W®(Q) = {c € WH®(;R); c(x) > ¢ for some ¢o > 0}. Then for
any (f,g) € L*(Q) x H*?(T"), we know from the standard elliptic theory that (46) admits
a unique solution S,(f, g) € H?(2), and that the linear operator

Sy (f.9) € LX(Q) x H*(T) = S,(f.9) € H* ()

is bounded. In the more general case where (f,g) € H* x H-'/%(T"), we obtain by arguing
in the exact same way as in Section 2 that there exists a unique u € L*(Q) obeying

- / udiv(oVE)dz = (f,0) — (g, 00,0)1/, v € H. (47)

Q

Such a function u will be referred to as the transposition solution of (46) and will be
denoted by SL(f,9).
Let us introduce the Hilbert space Hay(ov)(Q2) = {u € L*(Q), div(eVu) € L*(Q)},

1/2
endowed with the norm ||ullm,, v @) = (HUH%Q(Q) + HdiV(JVu)H%Q(Q)) . By a slight
modification of the proof of Lemma 1 (e.g. [6]), the trace map
tTu = aj8£u‘p, ue€ 29Q), j=0,1,

is extended to a linear continuous operator, still denoted by t7, from Hgy(ov)(€2) into
H==Y2(T"). Thus, bearing in mind that S'(0,g) € Ha(Q) for g € H~Y/?(T), we see that
the DN map

Ay g€ HVHD) = 19840, 9) € H3/*(I),

is a bounded operator.
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Assume that o € W2(Q) = W?>(Q) N W,(). Taking into account that
—div (JV(J_I/QE)) — g1/ (—AT + 0_1/2(A01/2)U) , VEH,
we get upon substituting (0,0~'/%v) for (f,v) in (47), that
/Ul/Qu(—Av +go0)dz = —(0%g,0,0), v € H,
0

where ¢, = 07'/2Ac'/2. As a consequence we have ¢'/28%(0,g) = 8! (0,0/2g), and hence
o'285(0,072g) = S}, (0,9).

From this and the identity ¢1(0'/?w) = o~'/2tJw+1071/2(8,0)tyw, which is valid for every
w € H?*(Q), and generalizes to w € Hyiy(ov)(Q2) by duality, we get that

1
A, = 50_1(31,0).7 + o072\, 072, (48)

Now pick 01,09 € Wioo(Q) such that oy = 0o on I and 9,01 = 0,09 on F. Thus,
putting ¢; = q,, for j = 1,2, we deduce from (48) that

(A — M) (9) = 07 (A, — Aoy) (07 2g), g € HTYA(D) N &'(F). (49)

Let us next introduce

AU1,U2 VS H_I/Q(F) N é"’(F) = (AU1 - Aaz)(g)IG € HI/Q(G)~

We notice from (49) that
Y —1/2% ~1/2
AQhQQg =0 / AULUZ(O-I / g)v

for every g € H-Y2(T')N &' (F), provided o1 = 05 on I' and 9,0, = 0,02 on FNG. In this
case, we may find a constant C' > 0, such that we have

Al < CllAcy 00l (50)

where || - || still denotes the norm of Z(H/*(I')N&'(F), H/?(G)). Here we used the fact
/2 is an isomorphism of H*!/2(T).

Finally, taking into account that ¢ = 0%/2 — 05/2 is solution to the system

(~A+aq)d =0y (g —q) inQ
=0 on I,

that the multiplier by o,

we get ||¢]|r2) < Cllg2 — q1]| -1(0) upon taking f = 0;/2((]2 —q1) and g = 0 in (15). Thus,
applying Theorem 1 and recalling (50), we obtain the:

Corollary 1. Let F and G be the same as in section 1, and let 6 > 0 and o9 > 0. Then
for any 0; € 0By2.(q), j = 1,2, obeying o; > oo and the condition

o1 =o0yon I and 9,00 = 0,00 on F NG, (51)
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we may find a constant C' > 0, independent of o1 and o4, such that we have:
_1)

Remark 3. It is not clear how to weaken assumption (51) in Corollary 1. Indeed, to our
knowledge, the best available result in the mathematical literature (this is a byproduct of
[13, Theorem 2.2, p. 922 and Theorem 2.4, p. 923]) on the recovery of the conductivity at
the boundary, claims for any non empty open subset 'y of I', and for all o,,, m = 1,2,
taken as in Corollary 1 and satisfying the condition supp (o7 — 02)|F C Iy instead of (51),
that

oy = oallizey < € (HAMH + 0 € 1 Ry

|01 — Foa|| ey < CIIAD, ,, IV, j=0,1.

01,02
Here A2, . denotes the operator g € HY*(I') N &' (o) — (Mg, — Aoy)(9)ire € HY*(To),
A, ,,|I is the norm of A, in B(HY/*()N &' (Ty), H*(I'y)) and C' > 0 is a constant

that depends neither on oy nor os.
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B UJIEHTUD®UKAIINN CKAJIAIPHOT'O ITIOTEHITNAJIA
10 YACTUYHON DJIJINIITUNYECKON

KAPTE IUPUXJIE - HEUMAHA

M. Yyaau, 4. Kuan, 3. Coxxopcu

Uccnenyercst BOIpoc ycTOMYUBOCTH pelieHust 0OpaTHOU 3a0adu ONpeIesIeHIsT CKAJIsAD-
HOT'O TIOTEHITNAJIA, BO3HUKAIOIIEr0 B CTAIMOHAPHOM ypaHenuu lllpenunrepa B orpanuyes-
HO# 06JIACTH 10 YaCTHIHOM SJTHITHIecKoi Kapre lupuxie — Helimana., A uMeHHO, yCI0BUS
Jlupuxie craBaTCa HA 3aTE€HEHHON YacTH I'paHunbl objactu u ycnoBus Heitmana — Ha ee
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