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Estimation of accuracy of finite-dimensional
methods of regularization

Vitaly P. Tanana and Natalya M. Yaparova

Abstract. We consider the estimation of the accuracy of finite dimensional approximations
of regularized solutions for inverse problems in a separable Hilbert space. A connection
of the regularization parameter with the estimates of error for these approximations and
with the estimates of initial date is obtained. For the establishment method the estimation
of error of the finite-dimensional approximation is obtained. This estimate is exact with
respect to the order.
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1 Introduction

Research of ill-posed problems is impossible without using calculating methods.
Therefore the projection finite difference and other discretizations which reduce an
initiate problem to a finite-dimensional one [3, 7, 10] play an important role. Until
now the ill-posed problems were solved in two stages. First we choose the optimal
method and find the error estimate for it. Then, using the discretization scheme
we construct the finite-dimensional variant of this method. However, research-
ing finite-dimensional approximations we restrict ourselves only to the problem
on convergence of approximations. Such approach of using finite-dimensional ap-
proximation had led to uncontrollable estimates. As a result the high accuracy of
the method got lost.

In our paper we use the approach suggested in [8], which connected the regu-
larization parameter both with the error of initial date and with the error of finite-
dimensional approximation of the initial problem. This allows us to consider the
finite-dimensional regularization methods of solution of the basic problem and to
obtain the estimates exact with respect to the estimate order. This approach is
illustrated by the example of the establishment method [6].
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2 Setting of the problem

Let U;F and V be reflexive Banach spaces; .U ! F / be the space of linear
bounded operators mapping U into F ; .U ! F /1 be the set of linear injective
completely continuous operators A W U ! F , whose set of values R.A/ is the
set everywhere dense in F ; .U ! F /2 be the linear manifold of linear finite-
dimensional operators mapping U into F ; B W V ! U be a linear completely
continuous operator; and Mr D BSr where Sr D ¹v W v 2 V; kvk � rº.

Consider the operator equation of the first kind

Au D f; (2.1)

where u 2Mr , f 2 F , A 2 .U ! F /1.
We assume that for a certain f0 there exists a precise solution u0 2 Mr of

equation (2.1), but instead of f we know its approximations fı 2 F , and the
estimate level ı > 0 such that kAh � Ak � h, kfı � f k � ı.

Consider now the set of operators ¹P˛.A/ W 0 < ˛ � ˛0º strongly continuous
with respect to a mapping .U ! F / � F into U and such that for all ˛ 2 .0I˛0�
and for all A 2 .U ! F / we have P˛.A/ 2 .F ! U/. Then following [1], we
shall call the set of operators ¹P˛.A/ W 0 < ˛ � ˛0º by the regularizing operator
set for equation (2.1) in the space U , if for each injective operator A 2 .U ! F /

and for all u 2 U the following relation holds:

P˛.A/Au �! u for ˛ ! 0:

Now we reduce equation (2.1) to the finite-dimensional one. To this end, we con-
sider the operator Ah 2 .U ! F /2 such that kAh �Ak � h, h > 0, and the oper-
ator of metric projection prŒ�IR.Ah/� of the space F on the set of values R.Ah/ of
the operator Ah. In order that the operator prŒ�IR.Ah/� be one-to-one and contin-
uous if suffices that the space F be strongly convex. Then the finite-dimensional
equation

Ahu D fı (2.2)

will correspond to equation (2.1) where fı D prŒfı IR.Ah/�, kfı � f0k � ı and
the values h and ı are known.

Apply to equation (2.2) regularizing set of operators ¹P˛.A/ W 0 < ˛ � ˛0º

and call the element u˛
ıh
D P˛.Ah/fı by the regularized solution of equation

(2.1) with the approximate initial data Ah and fı .
In order to estimate the deviation of the regularized solution u˛

ıh
from the exact

solution u0 in the class Mr , we consider the following function [8]:
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Estimation of accuracy of finite-dimensional methods of regularization 329

�ŒP˛.A/� D sup
u;fı;Ah

®
kP˛.Ah/ prŒfı IR.Ah/� � uk W

u 2Mr ; kAh � Ak � h; kAu � fık � ı
¯
: (2.3)

3 Definition and the properties of the continuity modules of the
inverse operator

Let the injective operator A 2 .U ! F /. Then following [2], define the functions
!1.�; r/ and !.�; r/ as follows:

!1.�; r/ D sup
®
ku1 � u2k W u1; u2 2Mr ; kAu1 � Au2k � �

¯
; (3.1)

!.�; r/ D sup
®
kuk W u 2Mr ; kAuk � �

¯
: (3.2)

The following statement [7] holds.

Lemma 1. Let the functions !1.�; r/ and !.�; r/ be defined by formulas (3.1) and
(3.2). Then

!1.�; r/ D !.�; 2r/:

Lemma 2. Let k � 0. Then

!.k�; kr/ D k!.�; r/:

Proof. The lemma evidently holds if k D 0. Let k > 0 and � � rkABk. Then
k� � krkABk and (3.2) yields

!.�; r/ D rkABk (3.3)

and
!.k�; kr/ D krkABk: (3.4)

From (3.3) and (3.4) it follows that !.k�; kr/ D k!.�; r/.
Let k > 0 and � < rkABk. Then ku 2Mkr and kA.ku/k � k� . Thus

k!.�; r/ � !.k�; kr/: (3.5)

Conversely let u 2 Mkr and kAuk � k� . Then u
k
2 Mr and kA.u

k
/k � � ,

Therefore,
1

k
!.k�; kr/ � !.�; r/

or
!.k�; kr/ � k!.�; r/: (3.6)

From (3.5) and (3.6) the statement of the lemma follows.
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330 V. P. Tanana and N. M. Yaparova

Lemma 3. The function !.�; r/ 2 C.Œ0I1/ � Œ0I1// is nondecreasing with re-
spect to � and r .

Proof. Nondecrease of the function !.�; r/ with respect to � and r follows from
(3.2). Next, we show that the function is continuous. The following cases are
possible. In the case when �; r > 0 we assume that �n ! � , rn ! r for n!1.
Introduce the numbers

cn D
� C j�n � � j

�
and c0n D

� � j�n � � j

�
; � > 0; (3.7)

dn D
r C jrn � r j

r
and d 0n D

r � jrn � r j

r
; r > 0: (3.8)

Denote kn D max.cn; dn/ and k0n D min.c0n; d
0
n/. Then from Lemma 2 and

taking into account (3.2), (3.7), (3.8) we have

k0n!.�; r/ � !.�n; rn/ � kn!.�; r/: (3.9)

As limn!1 kn D limn!1 k0n D 1, the lemma statement follows for �; r > 0

from (3.9).
When r D 0, it follows from (3.2) that

!.�; r/ D 0: (3.10)

We now consider the remaining cases. Let rn ! 0, �n ! � � 0. Then taking
(3.2) into account we obtain

!.�n; rn/ � rnkBk; (3.11)

and this yields !.�n; rn/! 0 for n!1.
Now, let �n ! 0, rn ! r � 0. Then there exists an r > 0 such that we have

rn � r for each n. The set M n will be defined as follows:

M n D ¹u W u 2 BSr ; kAuk � �nº; (3.12)

where Sr D ¹v W v 2 V; kvk � rº. Since the set M n defined in (3.12) is compact
for all n, here exist an element un 2M n such that

kunk D sup¹kuk W u 2M nº:

We show that n ! 1 for un ! 0. Assume the contrary: there exists d > 0

and the subsequence ¹unkº such that for all k

kunkk � d: (3.13)
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As the subsequence ¹unkº belongs to compact BSr there exists a subsequence
unkl such that

unkl ! Ou for l !1: (3.14)

From (3.13) and (3.14) it follows that

Ou ¤ 0 (3.15)

and Aunkl ! 0 yields
A Ou D 0: (3.16)

The injective property of the operator A follows from (3.15) and (3.16). This
contradicts the initial assumption and proves the lemma.

4 Estimate of the error of the regularized solution in the case if the
operator is given exactly

To estimate the error of the regularized solution when the operator is given exactly,
we use the function �0ŒP˛.A/� defined by relation

�0ŒP˛.A/� D sup
u;f�

®
kP˛.A/f� � uk W u 2Mr ; kAu � f�k � �

¯
: (4.1)

The following estimate holds [3].

Lemma 4. The function �0 ŒP˛.A/� satisfies the inequality

1

2

®
kŒE � P˛.A/A�Bk � r C kP˛.A/k�

¯
� �0 ŒP˛.A/�

� kŒE � P˛.A/A�Bk � r C kP˛.A/k�:

Lemma 5. If � < rkABk, then �0ŒP˛.A/� � !.�; r/.

Proof. Since the set Mr is a compact set, there exist points u1; u2 2 Mr so that
ku1 � u2k D !1.2�; r/ and kAu1 � Au2k � 2� . From Lemma 1 it follows that

ku1 � u2k D !.2�; 2r/:

Hence and from Lemma 2, we have

ku1 � u2k D 2!.�; r/: (4.2)
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Let Qf� D 1
2

�
Au1CAu2

�
. Then kAu1� Qf�k � � and kAu2� Qf�k � � , and for

f D Qf� , Qu˛� D P˛.A/ Qf� the following relation will hold:

sup
®
k Qu˛� � u1k; k Qu

˛
� � u2k

¯
�
1

2
ku1 � u2k: (4.3)

The relations (4.1), (4.2) and (4.3) prove the lemma.

5 The below estimate for the error �ŒP˛.A/�

LetU D F D V D H , whereH be a separable Hilbert space and an operatorA 2
.H ! H/1 be positive semidefinite, self-adjoint, completely continuous. Assume
the set of strongly continuous operators with respect to ˛ ¹P˛.A/ W 0 < ˛ � ˛0º,
and the regularizing equation (2.1) in the space H defined by the formula

P˛.A/ D ˆ.A; ˛/Q; 0 < ˛ � ˛0: (5.1)

HereQ D prŒ�; R.A/�,R.A/ is the closure of values of the operatorA, andˆ.�; ˛/
is a nonnegative function continuous with respect to � .

Assume that the function kP˛.A/k�1 does not decrease by ˛, and the operator
B , generating the set Mr , is such that B D g.A/, where g.�/ strongly increases
and lim�!0 g.�/ D 0.

Lemma 6. The function ˆ.�; ˛/ satisfies the relation

sup
�2Sp.A/

ˆ.�; ˛/ �!1 for ˛ ! 0: (5.2)

Proof. Assume the contrary, i.e. (5.2) fails. Then there exist K and the sequence
¹˛nº such that ˛n !C0 for n!1 and

sup
�2Sp.A/

ˆ.�; ˛n/ � K (5.3)

for each n.
Since kP˛.A/k � sup�2Sp.A/ˆ.�; ˛/ and from (5.3) it follows that for each n

kP˛.A/k � K: (5.4)

The set of the values R.A/ and R.B/ of the operators A and B are dense in H ;
therefore the linear span LŒA.Mr/� of the set A.Mr/ is dense in H , i.e.

LŒA.Mr/� D H: (5.5)
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Estimation of accuracy of finite-dimensional methods of regularization 333

The properties (5.4), (5.5) and the fact that the set of operators ¹P˛.A/ W 0 <
˛ � ˛0º regularizes equation (2.1) in the setMr , yield boundedness of the inverse
operator A�1. This contradicts the complete continuity of the operator A. The
lemma is proved.

In order to evaluate �ŒP˛.A/� we consider the function

G.˛/ D sup
�2Sp.A/

j.1 � �ˆ.�; ˛// g.�/j: (5.6)

Lemma 7. The function G.˛/ is continuous for ˛ > 0.

Proof. Let ˛0 > 0 and ˛n ! ˛0 for n ! 1, where ˛n � RC. From the strong
continuity of the operator set ¹P˛.A/ W 0 < ˛ � ˛0º it follows that for all u0 2 H

P˛n.A/Au0 �! P˛0.A/Au0 for n!1: (5.7)

As Mr D BSr is compact, uniform convergence of the operator sequence
P˛n.A/ to the operator P˛0.A/ in the set A.Mr/ follows from (5.7).

Thus
kP˛n.A/AB � P˛0.A/ABk �! 0 for n!1: (5.8)

Hence it follows thatˇ̌
kB � P˛n.A/ABk � kB � P˛0.A/ABk

ˇ̌
�! 0 for n!1: (5.9)

From the forms of operators A;B and P˛.A/ it follows that

kB � P˛.A/ABk D sup
�2Sp.A/

j.1 � �ˆ.�; ˛// g.�/j: (5.10)

Relations (5.6), (5.9) and (5.10) proof the lemma.

Define the parameter ˛� as

˛� D sup
®
˛ W G.˛/ � � sup

�2Sp.A/

ˆ.�; ˛/
¯
: (5.11)

Lemma 8. Let the function G.˛/ be defined by relation (5.6), and ˛� by (5.11),
where � > 0. Then

lim
�!0

˛� D 0:

Brought to you by | South Ural State University
Authenticated

Download Date | 11/14/18 6:33 AM



334 V. P. Tanana and N. M. Yaparova

Proof. Assume the contrary. Then there exists the value d > 0 and the sequence
¹�nº such that limn!1 �n D 0 and for all n

˛�n � d:

Let ˛n be the value of parameter ˛, such that

˛n �
d

2
: (5.12)

and
G.˛n/ � kP˛n.A/k�n: (5.13)

Since kP˛.A/k�1 does not decrease by ˛ and from (5.12), it follows that for
each n

kP˛n.A/k � kPd
2
.A/k: (5.14)

Relations (5.13) and (5.14) yield

G.˛n/ �! 0 for n!1: (5.15)

Select the converging subsequence ¹˛nkº from ¹˛nº so that

lim
k!1

˛nk D Ǫ �
d

2
: (5.16)

Continuity of the function G.˛/ installed in Lemma 7 and relation (5.15) yield

G. Ǫ / D 0: (5.17)

From (5.10), (5.16) and (5.17) it follows that for each f 2 A.Mr/

P Ǫ .A/f D A
�1f:

Taking into account the boundedness of the operator P Ǫ .A/ and the density of the
linear span LŒA.Mr/� of the set A.Mr/, we obtain P Ǫ .A/f D A�1f for each
f 2 H . This in turn implies boundedness of the operator A�1 and contradicts the
initial assumption.

We denote by �n the eigenvalues of the operator A, corresponding to its eigen-
elements en. The sequence �n is supposed to be nonincreasing and limn!1 �n D
0. As the operatorˆ.A; ˛/ is a function depending on the operatorA, it has similar
eigenelements en. Denote by �n.˛/ the corresponding eigenvalues of the operator
ˆ.A; ˛/.

Brought to you by | South Ural State University
Authenticated

Download Date | 11/14/18 6:33 AM



Estimation of accuracy of finite-dimensional methods of regularization 335

From the properties of the operator norm it follows that there exists an eigen-
element ei.˛/ such that

�i.˛/ D �i.˛/.˛/ D kP˛ei.˛/k �
kP˛.A/k

2
: (5.18)

Let
�1.˛/ D kP˛.A/e1k: (5.19)

Lemma 9. Suppose that �1.˛/ and �i.˛/.˛/ are defined by relations (5.19) and
(5.18). Then there exists Q̨0 such that for all ˛ � Q̨0 the following relation holds:

�1.˛/ �
�i.˛/.˛/

9
:

Proof. Since ˛ ! 0, we have P˛.A/e1 �! A�1e1. Then for ˛ ! 0 we obtain

�1.˛/ �! kA
�1e1k D �

�1
1 ; (5.20)

where ��11 > 0. From Lemma 6 it follows that

kP˛.A/k �! 1 for ˛ ! 0: (5.21)

On the basis (5.18), (5.21) we have

�i.˛/.˛/ �!1 for ˛ ! 0: (5.22)

The statement of lemma follows from (5.20) and (5.22).

We define now the number �0. For 0 < ı � ı0 and 0 < h � h0, where
h0 < 2kAk, let the number �0 satisfy the conditions

�0 D rkBkh0 C ı0 (5.23)

and
�0 < kfık: (5.24)

The following statement holds.

Theorem 1. Let A 2 .H ! H/1 be a nonnegative self-adjoint operator, the regu-
larizing set ¹P˛.A/ W 0 < ˛ � ˛0º be defined by relation (5.1), the regularization
parameter ˛�0 by relation (5.11), where the number �0 satisfies the conditions
(5.23), (5.24), and the eigenvalues �1.˛/, �i.˛/.˛/ be defined by relations (5.19),
(5.18). Then the value �ŒP˛.A/� satisfies the estimate

�ŒP˛.A/� �
1

38
!.rkBkhC ı; r/:
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Proof. The existence of the values ı0 and h0 follows from Lemma 8 and 9.
Further, we consider the two cases.

First case. Let the function G.˛/, given by (5.6), satisfy inequality

G.˛/ �
1

18
kP˛.A/k.rkBkhC ı/: (5.25)

Denote byHk the subspace ofH , generated by the eigenelements e1; e2; : : : ; ek
of the operator A. We choose the number k from the conditions

�kC1 � h (5.26)

and
Gk.˛/ �

1

2
G.˛/; (5.27)

where
Gk.˛/ D sup

u0

®
ku0 � P˛.A/Au0k W u0 2Mr \Hk

¯
: (5.28)

As the operator Ah we take the contraction of the operator A in the subspace
Hk , and the element fı we define by the relation fı D Au0, where u0 2Mr\Hk .

Thus, (5.26) yields
kA � Ahk � h (5.29)

and
kfı � Au0k � ı: (5.30)

Taking into account (2.3) and (5.27)–(5.30) we obtain

�ŒP˛.A/� �
1

2
G.˛/: (5.31)

Relations (5.25) and (5.31) yield

�ŒP˛.A/� �
1

38

®
G.˛/C kP˛.A/k.rkBkhC ı/

¯
: (5.32)

From (5.32) and basing on Lemma 4 and 5 we have

�ŒP˛.A/� �
1

38
!.rkBkhC ı; r/: (5.33)

Second case. Suppose that the function G.˛/ given by relation (5.6) satisfies
the inequality

G.˛/ <
1

18
kP˛.A/k.rkBkhC ı/: (5.34)
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Estimation of accuracy of finite-dimensional methods of regularization 337

Now we construct the finite-dimensional approximation Ah of the operator A.
Define the operator Ah so that Sp.Ah/ D Sp.A/, and the eigenelements qn, cor-
responding to eigenvalues �n 2 Sp.Ah/, defined by the relations

q1 D
e1 � h1ei.˛/q

1C h21

;

qi.˛/ D
ei.˛/ C h1e1q

1C h21

;

qn D en for n ¤ 1 and n ¤ i.˛/;

where h1 D h
2kAk

, and en are eigenelements of A.
Consider a finite-dimensional subspace Hk , generated by eigenelements e1;

e2; : : : ; ek of the operator A. We choose the number k so that

�kC1 <
h

2
(5.35)

and
i.˛/ < k: (5.36)

Then we define the operator Ah 2 .H ! H/2 as

Ahu D

´
Ahu; for u 2 Hk;
0; for u 2 H?

k
:

(5.37)

Formulas (5.35)–(5.37) yield

kA � Ahk � h: (5.38)

Since e1 2 Hk , by setting u0 D rkBke1, f 0 D Au0 and f ı D Au0C ıqi.˛/, we
obtain u0 2Mr \Hk and

kf ı � A Nu0k � ı: (5.39)

From (2.3), (5.38), (5.39) it follows that

�ŒP˛.A/� � ku0 � P˛.Ah/f ık: (5.40)

Now we consider the estimate from below for the right-hand side of the inequality
(5.40):

ku0�P˛.Ah/f ık �
ˇ̌
kP˛.Ah/f ı �P˛.A/A Nu0k�kP˛.A/Au0�u0k

ˇ̌
: (5.41)

We estimate each term in the right-hand side of (5.41).

Brought to you by | South Ural State University
Authenticated

Download Date | 11/14/18 6:33 AM
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Since P˛.Ah/q1 D �1.˛/q1 and P˛.Ah/qi.˛/ D �i.˛/qi.˛/, and taking into
account P˛.A/e1 D �1.˛/e1, where e1 D .q1 C h1qi.˛//=.1C h21/

1=2, we have

P˛.Ah/f ı � P˛.A/f 0

D ı�i.˛/qi.˛/ C �i.˛/
rkAk � kBkh1q

1C h21

� qi.˛/ C �1.˛/
rkAk � kBkq
1C h21

� q1

� �1.˛/
rkAk � kBkq
1C h21

� q1 � �1.˛/
rkAk � kBkh1q

1C h21

� qi.˛/: (5.42)

Regrouping the terms in (5.42) and collecting the similar, we obtain

kP˛.Ah/f ı �P˛.A/Au0k D
�
�i.˛/ � �1.˛/

�rkAk � kBkh1q
1C h21

C �i.˛/ � ı: (5.43)

Taking into account �i.˛/ � 1
2
kP˛.A/k and (5.43) we have

kP˛.Ah/f ı � P˛.A/Au0k �
1

9
kP˛.A/k

�
rkBkhC ı

�
: (5.44)

Relations (5.34) and (5.44) yield

�ŒP˛.A/� �
1

18

®
G.˛/C kP˛.A/k.rkBkhC ı/

¯
: (5.45)

From (5.45) and on the basis of Lemma 4 and 5 we obtain the inequality

�ŒP˛.A/� �
1

18
!.rkBkhC ı; r/: (5.46)

Relations (5.33) and (5.46) prove the theorem.

6 The establishment method

Let A 2 .H ! H/1. Then following [5], we define the operator eAt by the
formula

eAt D

1X
nD0

An � tn

nŠ
: (6.1)

Note that the series in (6.1) converges absolutely for all values t and define the
linear bounded operator acting fromH intoH . We shall use further the following
result [9].
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Lemma 10. Let A1, A2 be nonnegative self-adjoint linear bounded operators act-
ing from H into H such that kA1 � A2k � h. Then

ke�A1 � e�A2k � 2h:

Assume that A 2 .H ! H/1 is nonnegative and self-adjoint. Then, follow-
ing [6], the establishment method consists in reducing equation (2.1) to the Cauchy
problem for differential equation

du.t/

dt
C Au.t/ D f; u.0/ D 0: (6.2)

From the Hilbert–Schmidt theorem [4] the existence and uniqueness of solution
of problem (6.2) for each t > 0 and f 2 H follows. This solution may be
represented as the series

P ˛.A/f D

1X
nD1

fn

�n

�
1 � e��nt

�
en; (6.3)

where en are the eigenelements and �n the eigenvalues of the operator A and
fn D .f; en/ for each n.

From formula (6.3) it follows that for each f0 D Au0, where u0 2 H , the
solution u.t/ converges to u0 for t ! 1. Thus, problem (6.2) generates the set
of operators ¹Pt W t > 0º, regularizing (2.1) in the whole H . Change the variable

˛ D
1

t
: (6.4)

Then the functionˆ.�; ˛/ generating the regularizing set of operators in the estab-
lishment method will be as follows:

ˆ.�; ˛/ D

�
1 � e�

�
˛

�
�

: (6.5)

Thus, following (6.3)–(6.5), the approximate solution u˛
ı

of solution (2.1) for f D
fı , obtained by the establishment method will be

u˛ı D P ˛.A/fı D

1X
nD1

f n
�n

�
1 � e�

�n
˛

�
en; (6.6)

where f n D .fı ; en/, and the parameter ˛ is for now not defined.
Let Ah 2 .H ! H/2 be a nonnegative self-adjoint operator, &1; &2; : : : ; &N be

eigenvalues and �1; �2; : : : ; �N be eigenelements of the operator Ah. Suppose
also that the operator Ah satisfies the relation

kAh � Ak � h: (6.7)
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Finite-dimensional approximation in the establishment method is the change of
problem (6.2) by its finite-dimensional analog

du.t/

dt
C Ahu.t/ D Ofı ; u.0/ D 0; (6.8)

where Ofı D pr.fı ;HN /, andHN D L h&1; &2; : : : ; &N i is the subspace generated
by the system &1; &2; : : : ; &N .

Problem (6.8) is the Cauchy problem for the system of differential equations
which for each f 2 H has a unique solution u˛

ıh
.N /. This solution can be repre-

sented in the form

P ˛.Ah/ Ofı D u
˛
ıh.N / D

NX
nD1

Ofn

�n

�
1 � e�

�n
˛

�
&n; (6.9)

where Ofn D . Ofı ; &n/.
The problem we have to solve is to estimate the deviation of the finite-dimen-

sional approximation u˛
ıh
.N / from the exact solution u0 and to choose the regu-

larizing parameter ˛ D ˛.ı; h/ which minimizes this estimate.

7 The estimate from above for deviation of the finite-dimensional
approximation from the exact solution in the class Mr

Let u0 2Mr , and the setMr D BSr be defined by the operator B D g.A/, where

g.A/ D Ap; p > 0: (7.1)

Lemma 11. Let Ah 2 .H ! H/2 be a nonnegative self-adjoint operator satisfy-
ing relation (6.7) and the operator P ˛.Ah/ define the finite-dimensional approxi-
mation u˛

ıh
.N / given by formula (6.9). Then, the following estimate holds:P ˛.Ah/ � 1

˛
:

Proof. Relation (6.9) yields

kP ˛.Ah/k
2
D sup

² NX
nD1

f 2n
�2n

�
1 � e�

�n
˛

�2
W

NX
nD1

f 2n � 1

³
; (7.2)

and from the results in [9] we have for each ˛ > 0

sup
�>0

�
1 � e�

�
˛

�
�
1

˛
:
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This, together with (7.2) yields

P ˛.Ah/ � 1

˛

which proves the lemma.

To estimate the error of the finite-dimensional approximation we introduce the
function

�1.˛/ D sup
®
ku0 � P˛.A/Au0 W u0 2Mr

¯
: (7.3)

Lemma 12. Under the conditions formulated above for the class of uniform regu-
larization and for operators A and P ˛.A/ the following estimate holds:

�1.˛/ � r
�p
e

�p
˛p:

Proof. Relations (6.3) and (7.3) yield

�21.˛/ D sup
² 1X
nD1

�2pn e�
2�n
˛ v2n W

1X
nD1

v2n � 1

³
; (7.4)

and from the results in [9] we have

sup
x>0

�x2p
ex

�
�

�2p
e

�2p
:

This inequality and (7.4) prove the lemma.

Let C1 be a certain positive number and

˛ D ˛.ı; h/ D C1
�
rkBkhC ı

� 1
pC1 : (7.5)

Theorem 2. Let the finite-dimensional approximation u˛
ıh
.N / be defined by for-

mula (6.9), the regularization parameter ˛ D ˛.ı; h/ be defined by (7.5), and
the exact solution u0 2 Mr , where Mr be defined by (7.1). Then the following
estimate holds: u˛ıh.N / � u0 � C2�rkBkhC ı� p

pC1 ;

where C2 is a certain positive constant.
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Proof. Since P ˛.Ah/ Ofı D P ˛.Ah/fı , we haveu˛ıh.N / � u0 � kP ˛.Ah/fı � P ˛.Ah/Ahu0k
C kP ˛.Ah/Ahu0 � P ˛.A/Au0k

C kP ˛.A/Au0 � u0k: (7.6)

We estimate each term in the left-hand side of (7.6). From Lemma 12 and (7.5)
we conclude

kP ˛.A/Au0 � u0k � r
�p
e

�p
C1 � .rkBkhC ı/

p
pC1 : (7.7)

From
kP ˛.Ah/fı � P ˛.Ah/Ahu0k � kP ˛.Ah/k � .rkBkhC ı/

and from Lemma 11 it follows that

kP ˛.Ah/fı � P ˛.Ah/Ahu0k �
1

C1
� .rkBkhC ı/

p
pC1 : (7.8)

Since
kP ˛.Ah/Ahu0 � P ˛.A/Au0k � ke

A=˛
� eAh=˛k � kuk (7.9)

and taking into account Lemma 10, relations (7.5), (7.9) and u0 2Mr , we obtain

kP ˛.Ah/Ahu0 � P ˛.A/Au0k �
2

C1
� .rkBkhC ı/

p
pC1 : (7.10)

From (7.6)–(7.8) and (7.10) it follows that a positive number C2 > 0 exists such
that u˛ıh.N / � u0 � C2�rkBkhC ı� p

pC1 ;

which proves the theorem.

From a theorem in [3] it follows that for g.A/ D Ap the continuity modules of
the inverse operator is defined by the formula

!.�; r/ D r
1

pC1 �
p
pC1 : (7.11)

Thus combining Theorems 1, 2 and formula (7.11) we can formulate the fol-
lowing theorem.

Theorem 3. Let the regularization parameter ˛ D ˛.ı; h/ be defined by (7.5),
and u0 2 Mr be the exact solution, where Mr is defined by (7.1). Then for the
establishment method, the following estimate, exact by the order, holds:

�ŒP ˛.A/� D C2
�
rkBkhC ı

� p
pC1 :
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