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The paper is devoted to the possibility of determinate and probabilistic scat-
tering under various assumptions of the state of the locations of medical robots in 
both fault-tolerance and vulnerable environments. The topicality of the work is 
due to the need to place medical robots in the coordinate space having disjoint 
polygons (robot bodies) which is absolutely unacceptable in the case of medical 
applications. As a limitation it is assumed that the medical robot sees its nearest 
neighbors and local monitor of multiplicity is functioning, which can determine 
the situation when robots occupy intersecting spaces. We propose a probabilistic 
scattering algorithm which describes the initial states of medical robots and the 
proper transient state algorithm which can predict the movement of robots to a 
location where they can intersect. It is shown, that when using the algorithm the 
states and motion algorithms can be estimated in a fault-tolerance (robots do not 
fail and the medium is stationary) and vulnerable (the robot may fail and the 
byzantine problem is not solved, the environment changes faster than the robot 
can react) environments. The estimates for the computational complexity of the 
algorithm working without the mission planner are given.  

Keywords: mobile medical robots; fault-tolerance; probabilistic scattering; self-
stabilization. 

 
Introduction 

In recent years, centralized sophisticated and expensive medical robots gave way to distributed sys-
tems of mobile autonomous and cheap medical robots [1–3]. The rise of distributed systems was based 
on two main reasons: 

1. The lower cost of uniform medical robots compared to centralized ones. For example, now there 
are polymorphic medical robots which consist of a network of low cost simple medical robots that are 
able to reorganize themselves into a single complex medical robot [4]). 

2. The simplicity of uniform medical robots. Indeed, it may be advantageous to use a group of sim-
ple small and relatively cheap medical robots in some instances of cooperative work. For example, ap-
plication of medical robot networks in hazardous or harsh environments, such as space, great depths of 
seas, or after some natural or man caused disasters, etc. It follows that the group should be able to reor-
ganize themselves without any prior infrastructure or after a major disaster occurred. 

On the other hand, as the systems of cheap, simple and relatively weak medical robots are not reli-
able we can face the problem of possible failures, especially when such medical robot systems are ex-
pected to operate in hazardous or harsh environments. At the same time, one of the main advantages of 
mobile medical robot systems is the possibility to correctly execute a given task even in case of faults. 
This is possible due to redundancy of such systems [5]. Another problem of these systems is a complex-
ity of coordination which appears because of the large medical robot networks. Due to simplicity of 
medical robots algorithm they follow must be simultaneously self-organized fault-tolerant and distrib-
uted. 

Another important task that has been studied to a lesser extent is that of scattering. In this task, the 
medical robots must start from any initial configuration, and then scatter on the positions, not fixed in 
advance, such that no two medical robots occupy the same position. 

To study the scattering problem, we consider the ATOM system model first defined by Suzuki and 
Yamashita [6]. In this model, medical robots are represented as points that evolve on the plane. At any 
given time, a medical robot can be either idle or active. In the latter case, the medical robot observes the 
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locations of other medical robots, computes a target position, and moves towards it. In our case we have 
a partially blind medical robot meaning that the medical robot has the capability of detecting the position 
of its nearest neighbor. Hereinafter, we use the term of visibility of nearest neighbor to express the sense 
of ”partially blind”. The time when a medical robot becomes active is governed by an activation daemon 
(scheduler). In the original definition of Suzuki and Yamashita, called the ATOM model, activations 
(i.e., look-compute-move) are atomic, and the scheduler is assumed to be arbitrary and distributed, 
meaning that at each configuration, an arbitrary (non-empty) subset of enabled medical robots is acti-
vated. In the CORDA model of Prencipe [7], activations are completely asynchronous, for instance al-
lowing medical robots to be seen while moving. 
 
Model 

Medical robots networks 
We consider a network of n autonomous mobile medical robots, denoted by r1; … ; rn, arbitrarily 

deployed in a two-dimensional unbounded plane. The medical robots are viewed as points, and they are 
capable to freely move in the plane. The medical robots never collide and two or more medical robots 
may simultaneously occupy the same physical position. The medical robots are devices with sensing, 
computational and motion capabilities. The medical robots are devoid of any common orientation and 
any means of explicit communication. Communication occurs in a totally implicit manner, by observing 
other medical robots’ position. Each medical robot has its own local coordinate system (e. g., Cartesian). 

The medical robots are uniform, it means that they all execute the same algorithm. The medical ro-
bots are anonymous. They cannot be distinguished by their appearance and they do not have any kind of 
identifiers that can be used during the computation. The medical robots are oblivious, meaning that they 
do not remember any previous observation nor computations performed in the previous steps. 

In this paper, we consider that medical robots have complementary capabilities: 
1. Visibility of nearest neighbor – each medical robot can only observe the position of its nearest 

neighbor. 
2. Local multiplicity detector – a medical robot can distinguish if there are more than one medical 

robot at the current position. 
This model is more adapted to systems where the visibility is replaced by wireless communication 

or radar detection. 
Summarizing, the medical robots are uniform, anonymous, oblivious, and endowed with capabilities 

of local multiplicity detection and visibility of nearest neighbor; they are devoid of any orientation. 
Medical robot computation cycle. Each medical robot repeatedly cycles through the following 

states: 
– Look. The medical robot observes the world and returns a snapshot of the positions of all other 

medical robots in the visibility range with respect to its local coordinate system. In our case, this obser-
vation returns the value of the distance between the medical robot and its nearest neighbor. 

– Compute. The medical robot performs a local computation to a probabilistic algorithm A. The al-
gorithm is the same for all medical robots and the result of the computed state is a destination point. 

– Move. The medical robot moves towards the computed destination. It can be stopped anywhere 
before the destination by the scheduler after some predefined distance has been traversed. 
 
Computational model 

The literature proposes two computational models: ATOM and CORDA. The ATOM model was in-
troduced by Suzuki and Yamashita [6]. In this model, each medical robot performs the actions of a com-
putation cycle (observation, computation and motion) once activated by the scheduler in an atomic man-
ner. The execution of the system can be modeled as an infinite sequence of rounds. In a round one or 
more medical robots are activated and perform a computation cycle. In every single activation, the dis-
tance that medical robot r i can travel in one cycle is bounded by δri > 0. Specifically, if the destination 
point computed at a given cycle by medical robot r is farther than δri, then the algorithm returns a point 
of at most δri . This distance may be different for different medical robots. 

The CORDA model was introduced by Prencipe [7]. This model refines the atomicity of actions 
performed by each robot. Hence, medical robots may perform in a decoupled fashion the atomic actions 
of a computation cycle. They may be interrupted by the scheduler in the middle of a computation cycle. 
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In particular, when a medical robot goes towards its goal, the move can end anywhere before the desti-
nation. Moreover, while a medical robot performs an action A, where A can be one of the following 
atomic actions: wait, look, compute or move, another medical robot may perform a totally different ac-
tion B. 

Scheduler. A scheduler decides at each configuration the set of medical robots allowed to perform 
their actions. We distinguish various kinds of scheduler. The arbitrary scheduler is such that at each con-
figuration an arbitrary subset of enabled medical robots is activated. In our case, a medical robot is en-
abled if it occupies a multiplicity point. A scheduler is fair if, in an infinite execution, a medical robot is 
activated infinitely often. The probabilistic scheduler guarantees that the probability for medical robot r i 
to be activated at time tj is such that limj→∞ Pr[r i(tj) = active] = 1. A centralized scheduler guarantees that 
at each configuration a single medical robot is allowed to execute its actions.  

In our work we use two hypotheses to assure the termination of scattering procedure: 
1. A non-fair scheduler activates a medical robot which is placed on one of multiplicity points, if a 

medical robot is alone on its position it will be never activated. 
Definition 2.1. A multiplicity aware scheduler – a scheduler which activates a medical robot which 

is placed on one of multiplicity points.  
2. A fair scheduler activates a medical robot even if it is alone on its position. In this case, the medi-

cal robots have a complementary capability as the local multiplicity detection. 
 
Faults 

The ordinary models of medical robot networks are relatively simple and cheap medical robots and, 
hence, not fail-proof. In addition, hazardous or harsh environments (explosion, theft, crash, etc.) can also 
affect the fail-proof of medical robots. Thus, it is essential to study distributed networks of autonomous 
mobile medical robots in the context of faulty medical robots. Our attention focuses on two types of 
faults: 

1. crash failures can happen in two cases: 
– medical robots physically disappear from the network; 
– medical robots stop all their activities, however they are still physically present in the network. 
Note. The scheduler activates only non-crashed medical robots in the case of crashed medical robots 

which are still physically present in the network. 
2. Byzantine failures. A Byzantine medical robot [8] might behave in arbitrary and unforeseeable 

ways. To prevent correct medical robots to disperse on the plan, a Byzantine medical robot chooses, by 
vision, one or more medical robots on the same multiplicity point and go at the same position. 

 
Scattering problem 

In the following we formally define the scattering problem. The Scatter problem is considered 
solved when no two medical robots occupy the same position [9, 10]. A system of n autonomous mobile 
medical robots solves the scattering problem if any execution of the system verifies the following prop-
erties: 

1. Convergence: Regardless of the initial position of the medical robots on the plane, no two medi-
cal robots are eventually located at the same position. 

2. Closure: Starting from a configuration where no two medical robots are located at the same posi-
tion, no two medical robots are located at the same position thereafter. 

3. Termination: Starting from any configuration the scattering procedure is finite when no two 
medical robots are located at the same position. 

Lemma. Termination of scattering is impossible without additional assumptions. 
Proof. During an execution of scattering procedure without additional assumptions, the medical ro-

bots never stop moving. A scheduler activates a medical robot even if it is alone on its position. The 
medical robots have no ability to detect number of medical robots on the same position and, even if no 
two medical robots are located at the same position, to stop. So, execution of scattering procedure must 
be infinite.  

Note. Petit and Dieudonné [10] proved that there does not exist a deterministic algorithm that solves 
the scattering problem in ATOM model, even if the medical robots have the localization knowledge or 
are able to detect the multiplicity. 



Математика 

Bulletin of the South Ural State University 
Ser. Mathematics. Mechanics. Physics, 2018, vol. 10, no. 3, pp. 41–51 

44 

If the faults are present (crash or Byzantine medical robots) in the system we can have a situation 
where several faulty medical robots can be on the same multiplicity point, so, the scattering of medical 
robots is impossible in the general sense. But to avoid this situation we consider that the scattering prob-
lem has a solution for the correct medical robots. For that we introduce a following definition: 

Definition. The weak scattering problem consists in providing scattering of correct medical robots. 
By definition [11] a self-stabilizing system is a system that will end in a correct state after a finite 

number of execution steps regardless of the initial states of the computing units. So, an algorithm is self-
stabilizing if it solves the scattering problem with oblivious or stateless medical robots [12]. 
 
Probabilistic scattering algorithm 

In this section we present a probabilistic self-stabilizing algorithm for the scattering problem. In 
general, r denotes a medical robot in the system, p(r) is used to represent the point in the plane occupied 
by that robot. A configuration of the medical robots at given time t (t > 0) is the set of positions in the 
plane occupied by the medical robots at time t: P(t) = {p1; … ; pn}. 

We consider that medical robots move according to a local coordinate system (i.e. the axes and the 
distances may be specific to each robot). The local coordinate system makes use of possible distances 
and directions. We consider the set A = {a1; a2; … ; ak} as the set of possible distances in the plane. The 
set A contains k elements, k > 0; k e N. The set B = {b1; b2; ... ; bd} is the set of possible directions which 
contains d elements, d > 0; d e N. Thus, we have the set of kd pairs (ai; bj) – the set of possible destina-
tion points in the plane. 

Lemma. Termination of scattering procedure in fault-free systems is possible with additional as-
sumptions.  

Proof. We can get a termination for the scattering procedure in fault-free systems in two cases. 
Case 1. Under a non-fair multiplicity aware scheduler (which activates a medical robot locating on 

one of multiplicity points). 
A non-fair scheduler can choose the same set of medical robots at each activation, so, the scattering 

problem has no solution. If we apply an additional assumptions that a non-fair scheduler activates only 
medical robots which are placed on a multiplicity point, thus, gradually we reduce number of multiplic-
ity points (at moment of activation each medical robot is obliged to move on other position). So, execu-
tion of scattering procedure is finite. 

Case 2. Under a fair scheduler which activates a medical robot even if it is alone on its position with 
multiplicity detection capability of medical robots. 

In [10], the authors apply a fair scheduler and note the necessity of multiplicity detection capability 
to ensure the termination of scattering procedure. During an execution of scattering procedure without 
additional assumptions, the medical robots never stop moving. Because they have no ability to detect 
number of medical robots on the same position and, even if no two medical robots are located at the 
same position, to stop. So, execution of scattering procedure must be infinite. 

But multiplicity detection allows the medical robots to stop if there exists no position with more 
than one robot. So, execution of scattering procedure can be finite. In fault-free systems we can apply 
both cases for the termination of scattering procedure. 
 
Systems under an arbitrary multiplicity aware scheduler 

In this section, we consider a system of medical robots with visibility of nearest neighbor under an 
arbitrary multiplicity aware scheduler.  

At the time of activation, the multiplicity aware scheduler activates a medical robot which is placed 
on a multiplicity point. This medical robot detects its nearest neighbor by vision and it builds its move-
ment circle by taking the half of the distance between itself and its neighbor. Then, it chooses a position 
with a probability within its movement circle and it moves towards the chosen position. 

A medical robot r1 has the capability of viewing its nearest neighbor – he detects the medical robot 
r2 its nearest strict neighbor (p(r1) ≠ p(r2)). It estimates the value of distance between them as βr1. Then, 
the medical robot r1 takes the half of this distance βr1 to build its movement circle with radius 1 2rβ . It 
moves at distance ai which is chosen with probability 1/k and a direction bj which is chosen with prob-
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ability 1/d. The destination coordinates are bounded by the movement circle: (εmin; 1 2rβ ), where 
εmin > 0. 

Definition The movement circle of medical robot r is a set of points in the circle with radius ( εmin; 

1 2rβ ), where βr1 is value of distance between medical robot r and its nearest strict neighbor; where 
εmin > 0 and εmin  can be different for every computation cycle. 

Algorithm 1. Probabilistic scattering for medical robot r. 
Function: 
compute nearest distance :: returns the distance βr1 be-

tween r and a nearest neighbor r’. 
A1 :: 
compute nearest distance () and medical robot r chooses 

a position pj with probability 1/kd (k – distance; d – direc-
tion) and move from current position pi towards the chosen 
position pj where pi ≠ pj within Circler2 e ( εmin; 1 2rβ ). 

Lemma. No two medical robots which are nearest 
neighbors choose the same destination point. 

Proof. Consider a system of two medical robots r1 and r2, so, they are nearest neighbors. The 
value of distance between medical robot r1 and r2 is β. By algorithm 1 each of the medical robots 
builds its movement circle by taking half of the distance between itself and its neighbor. The medical 
robot r1 has its movement circle: Circler1 e  ( εmin; 2β ), and respectively for medical robot r2: Circler2 

e ( εmin; 2β ). So, the movement circles of medical robots have one point of intersection on the border 
of circles. But the medical robots can move within their movement circles and not on the border of 
circles. So, they can not choose the same destination because the medical robots have not a sector of 
intersection.  

Definition. Legitimate configuration: 
∀ r i; local multiplicity detection (position[r i]) = 1. 
Lemma  (Closure). Started in a legitimate configuration the system verifies the closure property. 
Proof. The medical robot r will be activated if it is on a multiplicity point: 
local multiplicity detection (position[r]) > 1. 
If medical robot r is alone at its position it will be never activated. 
Lemma (Convergence). For any time tz and for every pair of medical robots (r i; r j) such that p(r i) = 

p(r j). By executing scattering algorithm, we have 

( ) ( )Pr 1lim i z j z
x

p t p t
→∞

 ≠ =  . 

Proof. If medical robots occupying the same position at the instant of activation do not choose the 
same destination, the condition of convergence is accomplished. 

The probability that n medical robots choose the same destination tends to zero when the number of 
rounds tends to infinity: 

( ) ( )
( ) 1

1
Pr 0,lim

x

i z j z n
x

p t p t
kd

−
→∞

 
  = = =   
 

 

where x is the number of rounds of execution. 
Consider two medical robots r1 and r2 which occupy 

the same position in the initial configuration. 
The probability that the medical robot r1 chooses a 

distance among k-elements is 1/k (respectively for r2). 
The probability that two medical robots r1 and r2 choose 
the same distance is upper bounded by k/k2 = 1/k. It’s the 
same for direction. The probability that two medical ro-
bots r1 and r2 choose the same element of direction among d-elements is upper bounded by 1/d. The 
choice of the two medical robots are independent, so, Pr[choice r1 ∩ choice r2] = 1/kd.  

The probability that two medical robots choose the same destination tends to zero if x →∞, where x 
is the number of rounds of execution. 

Fig.  1. Watts – Radius detection of the 
mov ement circle  

Fig.  2. Two medical robots occupying the same 
position at the instant of activation 
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Lemma. Algorithm 1 converges in 
1

1
1

n
kd

− +
−

 rounds under an arbitrary scheduler with multi-

pliciy detection assumption. 
Proof. The scheduler activates only the medical robots with strict multiplicity. That is a medical ro-

bot alone on its position is not activated. 
Consider a system with n medical robots and let Xt = k be the stochastic process shown in fig. 3: at 

round t there are k medical robots at the same position and n–k medical robots with different positions. 
In the worst case, all the n medical robots are initially placed on the same point, X0 = n. We should 

compute the time needed for the stochastic process to reach 1 (all the medical robots have different posi-
tions). Note that in a particular configuration the scheduler may activate all the medical robots on the 

same multiplicity point at the same time and all of them may choose the same destination. Let e
bT  be the 

expectaction time for the Markov chain defined above to reach state e starting from state b. Formally, 

{ }0min ,such that knowinge
b tT E t X e X b = = =  . 

 

 
Fig. 3. Time of convergence in the worst case 

 

It follows that the convergence time of Algorithm is 1
nT  computed below. 
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( ) 1

1
1np

kd
−= −  – probability not to choose the same destination. 

1 1 1 1
11n n n n n nT p T T p T−= + + − , 

( )1 1
11 n n np T T−= − , 

( )
( )

1 1
1 1

1

1 1 1
1

1 11
n n n

n
n

T T
p kd

kd

− −

−

− = = = +
−−

. 

Thus, 

( )

( )

1 1
1 1

1 1
1 2 2

1 1
2 1

1
1 ,

1

1
1 ,

1

1
1 .

1

n n n

n n n

T T
kd

T T
kd

T T
kd

− −

− − −

 − = + −


− = +
 −



 − = +

−

⋮

 

So,  

( )
( )

1
1

1

1
1

1

n

n i
i

T n
kd

−

=
= − +

−
∑ . 

If kd ≥ 2, so 
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We can bound the equation: 
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The algorithm converges in 
1

1
1

n
kd

− +
−

 rounds. 

Note that we studied the time of convergence of Algorithm 1 in a discrete space. In a continuous 
space the set of possible destinations for every medical robot tends to infinity. For k-distances choices 

→∞ and for d-directions choices →∞, the fraction 
1

1kd −
 tends to 0. It follows that the convergence 

time tends to n–1 rounds.  
Lemma. Algorithm 1 converges in n–1 steps under a centralized scheduler with multiplicity detec-

tion assumption. 
Proof. A centralized scheduler activates the medical robots on multiplicity points one by one. The 

probability that the activated medical robot reaches a sigularity position after it completes its move op-
eration is 1. 

  
Fig. 4. Time of convergence in the best case 

 
The convergence time is (n–1) steps. 
Lemma 4.7. Algorithm 1 converges on average in logkdn rounds under an arbitrary multiplicity 

aware scheduler. 
Proof. Consider a system of n medical robots. A scheduler activates the non empty subset of medi-

cal robots which are placed on the multiplicity points. If a medical robot is alone on its position it will be 
never activated. At the moment of activation a medical robot chooses with probability 1/kd its future 
position, where k – number of elements of possible distances and d – number of elements of possible 
directions. 
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Consider that all n medical robots are initially placed on the same point p0. The scheduler activates 
the medical robots. The probability that at least one medical robot chooses the position px (a pair (ai; bj) 
is the position px in the plane) is n = kd. The probability that after i-rounds on the position px remains no 
more than one medical robot is n/(kd)i. So, the average convergence time is logkd n. If kd →∞ the aver-
age convergence time equal to 1. 

The number of rounds is 
log

log

n
i

kd
= : 

( )
1

i

n

kd
= , 

( )i
n kd= , 

log logn i kd= , 

log

log

n
i

kd
= . 

Note. The convergence time with the same assumptions as in Lemma is log42. 
 
Systems under a fair scheduler 

In this section we consider a system of medical robots with nearest neighbor visibility under a fair 
scheduler which activates a medical robot even if it is alone on its position. In this case, the medical ro-
bots possess complementary capability as the local multiplicity detection to assure the termination of 
scattering procedure. 

A system of n autonomous mobile medical robots solves the scattering problem if any execution of 
the system verifies the following properties: 

1. Convergence: regardless of the initial position of the medical robots on the plane, no two medical 
robots are eventually located at the same position. 

2. Closure: starting from a configuration where no two medical robots are located at the same posi-
tion, no two medical robots are located at the same position thereafter. 

3. Termination: starting from any configuration the scattering procedure is finite when no two 
medical robots are located at the same position. 

In Lemma we proved that the termination is possible in the systems of medical robots with capabil-
ity of local multiplicity detection under a fair scheduler. 

At the time of activation, the scheduler activates a medical robot even if it is alone on its position. 
This medical robot verifies the multiplicity. If the medical robot distinguishes more than one medical 
robot on its position it executes the algorithm 1, else it does not move. Executing algorithm 1 the medi-
cal robot detects its nearest neighbor by vision and it builds its movement circle by taking the half of the 
distance between itself and its neighbor. Then, it chooses a position with a probability within its move-
ment circle and it moves towards the chosen position. 

A medical robot r1 has the capability of viewing its nearest neighbor – he detects the medical robot 
r2 its nearest strict neighbor (p(r1) ≠ p(r2)). It estimates the value of distance between them as βr1. 

Then, the medical robot r1 takes the half of this distance βr1 to build its movement circle with radius 

1 2rβ . It moves at distance ai which is chosen with probability 1/k and a direction bj which is chosen 

with probability 1/d. The destination coordinates are bounded by the movement circle: ( εmin; 1 2rβ ), 
where εmin > 0. 

Algorithm 1. Probabilistic scattering for medical robot r. 
Function: 
local multiplicity detection :: local multiplicity detection. 
compute nearest distance :: returns the distance βr between r and a nearest neighbor r’. 
A1 :: 
if local multiplicity detection () > 1; 
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then compute nearest distance () and medical robot r chooses a position pj with probability 1/kd (k – 
distance; d – direction) and move from current position pi towards the chosen position pj where pi ≠ pj 
within Circler2 e  ( εmin; 1 2rβ ). 

else do not move. 
Lemma (Convergence) are true for this case, because, in these Lemmas we do not use any assum-

tions of scheduler. 
Lemma (Closure) Started in a legitimate configuration the system verifies the closure property. 
Proof. Each medical robot has a complementary capability as local multiplicity detection. At the 

moment of activation a medical robot verifie legitimate configuration. If local multiplicity detection (po-
sition[r]) > 1 than this medical robot chooses a new position with probability 1/kd (k – distance, d – di-
rection) and move towards it, else it does not move.  

The time of convergence in the case of arbitrary multiplicity aware schaduler is better than in the 
case of fair scheduler, because, an arbitrary multiplicity aware scheduler activates the medical robots of 
multiplicity points whereas a fair scheduler activates a medical robot even if it is alone on its position. 

Note. The time of convergence in the case of multiplicity aware scheduler is better than in the case 
of fair scheduler, because, a multiplicity aware scheduler activates the medical robots of multiplicity 
points whereas a fair scheduler activates a medical robot even if it is alone on its position. 

The goal of our research is to define minimal capabilities of theoretical medical robots for solving 
the scattering problem in both fault-free and fault-prone systems. We proposed a probabilistic self-
stabilizing algorithm for the scattering problem. As far as we know, this is the first attempt to solve scat-
tering in fault-prone environments [13, 14]. 

The given paper is completed with the support of the Ministry of Education and Science of the Rus-
sian Federation within the limits of the project part of the state assignment of TUSUR in 2017 and 2019 
(project 2.3583.2017) and science school (№ NSH-3070.2018.8).  

In conclusion, the authors are pleasant sincere gratitude to Professor A.V. Bogomolov for his 
hearts discussion of the on problem of medical device and equipment in the framework of medical and 
biological research and congratulate him on anniversary. 
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Работа посвящена возможности детерминированного и вероятностного рассеяния при раз-
личных предположениях состояния местоположения медицинских роботов как в безотказной, так 
и в уязвимой среде. Актуальность работы обусловлена необходимостью размещения медицин-
ских роботов в пространстве координат, имеющие непересекающиеся полигоны (тела роботов), 
что в случае медицинских приложений абсолютно недопустимо. В качестве ограничений приня-
ты предположения, что медицинский робот видит ближайших соседей и функционирует локаль-
ный монитор множественности, который может определять ситуацию, когда роботы занимают 
пересекающиеся места в пространстве. Предлагается алгоритм вероятностного рассеяния, опи-
сывающий исходные состояния медицинских роботов и собственно алгоритм переходных со-
стояний, которые может прогнозировать движение роботов в местоположение, где они могут пе-
ресекаться. Показывается, что при использовании алгоритма могут быть оценены состояния и 
алгоритмы движения как в безотказной среде (роботы не выходят из строя и среда стационарна), 
так и в уязвимой среде (робот может выйти из строя, не решена Византийская проблема, среда 
меняется быстрее, чем робот может реагировать). Также приведены оценки по вычислительной 
сложности алгоритма, работающего без планировщика миссий.  

Ключевые слова: робот; медицинский робот; алгоритм; вероятностное рассеяние; авто-
стибилизация. 
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