СТРУКТУРНЫЕ И ТЕРМОХИМИЧЕСКИЕ ХАРАКТЕРИСТИКИ КРИСТАЛЛИЧЕСКИХ СУЛЬФАТОВ ЩЕЛОЧНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

О.Н. Груба, Н.В. Германюк, А.Г. Рябухин

Представлена методика расчета структурных и термохимических характеристик кристаллических сульфатов щелочных и щелочноземельных металлов. Методика построена на использовании моделей эффективных ионных радиусов, метаморфозы кристаллических структур в квазикубическую, энтальпии кристаллической решетки.

Ключевые слова: структурные характеристики, энтальпия, кристаллическая решетка, сульфаты, ионный радиус, щелочные металлы, щелочноземельные металлы.

Разработка высокоточных методик расчета структурных характеристик кристаллических соединений остается весьма актуальной для современной химии задачей, решение которой позволяет уточнять имеющие экспериментальные данные, прогнозировать свойства малоизученных соединений, создавая, таким образом, общирные базы данных.

Сульфаты щелочных и щелочноземельных металлов широко используются для технических целей, в химической промышленности. Основная структурная единица сульфатов анионный радикал SO_4^{2-} . Сульфат-ион, как и ClO_4^- , представляет собой тетраэдр, в центре которого находится катион S^{6+} в окружении ионов O^{2-} , являющийся комплексообразователем. Вероятно, тетраэдры взаимодействуют ребрами, образуя цепные структуры как в поликислотах или плоскостями основания, образуя бипирамиды. Соединения щелочных и щелочноземельных металлов очень часто используются в качестве реперов (контрольных точек) в различных методах приближенных расчетов. Ионы этих металлов обладают электронным строением s^2p^6 со сферически симметричным электромагнитным полем и малыми зарядностями 1 и 2. Для многих их соединений известны рентгеноструктурные и термические характеристики, что позволяет проверить адекватность разрабатываемых моделей экспериментальным данным.

Сульфаты щелочных металлов

Структурные характеристики

Сульфаты щелочных металлов кристаллизуются в ромбической (р) сингонии (структурная группа K_2SO_4 , *Pnam*-4), которая характеризуется тремя осями *a*, *b* и *c*. Алгоритм расчета структурных характеристик [1, 2] рассмотрим на примере Rb_2SO_4 (*a*=5,949, *b*=10,391, *c*=7,780):

1. Объем элементарной ячейки:

$$V = a \cdot b \cdot c. \tag{1}$$

$$V = 5,949 \cdot 10,391 \cdot 7,780 = 480,9289.$$

2. Параметр квазикуба:

$$a_{\rm kk} = \sqrt[3]{V}$$
 . (2)
 $a_{\rm kk} = \sqrt[3]{480,9289} = 7,83478$.

3. Структурная постоянная:

$$\alpha = \alpha_{\text{rerp}} \ \alpha_{\text{OLK}} = \frac{3\sqrt{2}}{8} \cdot \frac{3\sqrt{3}}{4\sqrt{2}} = 0,487139.$$

4. Межструктурное расстояние $Rb^+ - SO_4^{2-}$:

$$r_{\rm P} = \alpha \cdot a_{\rm KK}$$
 . (3)
 $r_{\rm P} = 0,487139 \cdot 7,83478 = 3,81663$.

5. Структурная константа для тетраэдра SO_4^{2-} :

$$\alpha_{\rm BH} = \alpha_{\rm terp} \; \alpha_{\Gamma \amalg K} = \frac{3\sqrt{2}}{8} \cdot \sqrt{2} = 0,75.$$

6. Расстояние между комплексообразователем и лигандами S-O:

$$r(S-O) = \alpha_{BH}(r_P - r(Me^+)).$$
(4)
$$r(S-O) = \alpha_{BH}(r_P - r(Rb^+)) = 0,75(3,81663 - 1,48148) = 1,75136.$$

7. Дебаевский радиус экранирования:

$$r_{D_{BH}} = r_D^{\circ}(\text{ZnS}) \cdot \left(1 + \sqrt{6^2 - 1}\right) \cdot f_{\text{rerp}} \cdot f_{\text{OLK}} =$$

= 17,581767 \cdot 6,9160798 \cdot $\left(\frac{3\sqrt{2}}{8} \cdot 3 - 1\right) \left(1 + \frac{\sqrt{3}}{4}\right) = 102,980000.$

8. Радиус комплексообразователя S⁶⁺:

$$=0,20560+0,10444=0,31004.$$

Результаты расчетов структурных характеристик для других сульфатов приведены в таблице 1.

Таблица 1

	$\frac{\text{Me}_2\text{SO}_4}{r(\text{Me}^+)[1]}$	a, b, c [3,4]	V , (ур. 1) а _{кк} , (ур. 2)	<i>r</i> _P , yp. (3)	r(S-O) yp. (4)	$r(S^{6+})$ yp. (5)
	1	2	3	4	5	6
1	K ₂ SO ₄ 1,33053	5,732 10,014 7,423	426,0820 7,52485	3,66565	1,75134	0,31002
2	Rb ₂ SO ₄ 1,48148	5,949 10,391 7,780	480,9289 7,83478	3,81663	1,75136	0,31004
3	Cs ₂ SO ₄ 1,68161	6,244 10,920 8,222	560,6120 8,24557	4,01674	1,75135	0,31003
4	Fr ₂ SO ₄ 1,71438		(574,4241) (8,31274)	(4,04946)	(1,75135)	(0,31003)

Структурные характеристики сульфатов щелочных металлов

Практическое постоянство $r(S^{6+}) = 0,31003_{(1)}$ свидетельствует об адекватности модели. Это позволило произвести предсказательные расчеты структурных характеристик сульфата франция.

Термохимические характеристики

По основному уравнению модели [1] энтальпия кристаллической решетки (правильно – энтальпия разрушения кристаллической решетки):

$$\Delta H_{\kappa p} = 83,581728 \, z_{\rm K}^2 \cdot z_{\rm A}^2 \cdot f_1 + 103,19053 \, A_{\rm M} \cdot \kappa u \cdot z_{\rm K} \cdot z_{\rm A} \cdot f_2 \cdot r_{\rm P}^{-1} \,.$$

$$\Delta H_{\kappa p} = 83,581728 \left(2 \cdot 1^2 \right) \cdot 2^2 \cdot \left(\frac{8}{3\sqrt{3}} - 1 \right) \cdot 6 \,+ \\ + \,103,19053 \cdot 1,71756556 \cdot 6 \cdot (2 \cdot 1) \cdot 2 \cdot \frac{4\sqrt{2}}{3\sqrt{3}} \cdot r_{\rm P}^{-1} \,.$$

$$\Delta H_{\kappa p} = 2164,836 + 4711,6988 \, r_{\rm P}^{-1} \,. \tag{6}$$

Исходные данные и результаты расчетов по уравнению 6 приведены в таблице 2.

Таблица 2

N⁰	Me_2SO_4	$\Delta_f H^{\circ}(\mathrm{Me}^+,\Gamma)$	$-\Delta_f H^{\circ}(\text{Me}_2\text{SO}_4,\kappa)$	$\Delta H_{\mathrm{kp}},$	$\Delta_f H^{\circ}(\mathrm{SO}_4^{2-},\Gamma)$
п/п	<i>r</i> _P ⁻¹ (табл. 1)	[5]	[3, 4]	yp. (6)	yp. (7)
	1	2	3	4	5
1	K_2SO_4	516 263	1437 7	3450 201	979 975
	0,2728028	510,205	1437,7	5450,201	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2	Rb_2SO_4	487 646	1441 9	3399 354	982 162
	0,2620113	407,040	1441,9	5577,554	902,102
3	Cs_2SO_4	457 627	1//2 9	3337 852	979 698
	0,2489581	457,027	1772,7	5557,052	777,070
4	Fr ₂ SO ₄	153 370	1440.2	(3328 374)	(081/116)
	0,2469465	ч33,319	1440,2	(3320,374)	(701,410)

Энтальпии кристаллической решетки сульфатов щелочных металлов

Вычисленные $\Delta H_{\rm kp}$ позволили рассчитать $\Delta_f H^{\circ}(SO_4^{2-}, \Gamma)$:

$$\Delta_f H^{\circ} \left(\mathrm{SO}_4^{2-}, \Gamma \right) = \Delta H_{\kappa p} - \left[2 \Delta_f H^{\circ} \left(\mathrm{Me}^+, \Gamma \right) \right] - \Delta_f H^{\circ} \left(\mathrm{Me}_2 \mathrm{SO}_4, \kappa \right).$$
(7)

Величины, приведенные в колонке 5, показывают согласие, что является критерием адекватности модели, связанной с расчетами термических характеристик.

Сульфаты щелочноземельных металлов

Структурные характеристики

Сульфаты щелочноземельных металлов тоже кристаллизуются в ромбической (р) сингонии, но в другой структурной группе (BaSO₄, *Pbnm*-4). Алгоритм расчета структурных характеристик прежний, но коэффициенты, естественно, другие. Рассмотрим ход вычислений на примере SrSO₄ (a = 5,393, b = 8,336, c = 6,846).

1. Объем элементарной ячейки:

$$V = a \cdot b \cdot c = 5,393 \cdot 8,336 \cdot 6,846 = 307,7691.$$

2. Параметр квазикуба:

$$a_{\rm kk} = \sqrt[3]{V} = \sqrt[3]{307,7691} = 6,75163.$$

3. Структурная постоянная:

$$\alpha = \alpha_{\text{pomg}} \; \alpha_{\text{tetp}} \; \alpha_{OUK} = \frac{4}{7} \frac{8}{3\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = 0,761905 \,.$$

4. Межструктурное расстояние $Sr^{2+} - SO_4^{2-}$:

$$r_{\rm P} = \alpha \cdot a_{\rm KK} = 0,761905 \cdot 6,75163 = 5,14410.$$

5. Структурная константа для тетраэдра SO_4^{2-} :

$$\alpha_{\rm BH} = \alpha_{\rm terp} \; \alpha_{\Gamma I \downarrow K} = \frac{\sqrt{3}}{2} \left(\sqrt{2-1} \right) \frac{\sqrt{2}}{2} = 0,439340 \,.$$

6. Межструктурное расстояние между комплексообразователем и лигандами S-O:

$$r(S-O) = \alpha_{BH}(r_P - r(Sr^{2+})) = 0,439340(5,14410 - 1,15779) = 1,75135$$

7. Дебаевский радиус экранирования такой же, что и для сульфатов щелочных металлов:

$$r_{DBH} = r_D^{\circ}(\text{ZnS}) \cdot \left(1 + \sqrt{6^2 - 1}\right) \cdot f_{\text{Terp}} \cdot f_{OLIK} = 102,980000.$$

8. Радиус комплексообразователя S^{6+} :

$$r(\mathbf{S}^{6+}) = \left[\frac{1}{2}\left(r(\mathbf{SO}) - r^{\circ}(\mathbf{O}^{2-}) + \left(r^{\circ}(\mathbf{O}^{2-})\right)^{2} \cdot r_{\mathbf{D}}^{-1}\right)\right] + \sqrt{\left[\frac{1}{2}\left(r(\mathbf{SO}) - r^{\circ}(\mathbf{O}^{2-}) + \left(r^{\circ}(\mathbf{O}^{2-})\right)^{2} \cdot r_{\mathbf{D}}^{-1}\right)\right] - \left(r^{\circ}(\mathbf{O}^{2-})\right)^{2} \cdot r_{\mathbf{D}}^{-1}} \right] \cdot r_{\mathbf{D}}^{-1} \cdot r_{\mathbf{D}}^{-1} = 0,20560 + 0,10443 = 0,31003.$$

Результаты расчетов структурных характеристик для сульфатов других щелочноземельных металлов приведены в таблице 3.

Таблица 3

	$\frac{\text{MeSO}_4}{r\left(\text{Me}^{2+}\right)[1]}$	a, b, c [3,4]	V , (ур. 1) a _{кк} , (ур. 2)	<i>r</i> _P , yp. (3)	r(S-O) yp. (4)	$r(S^{6+})$ yp. (5)
	1	2	3	4	5	6
1	CaSO ₄ 1,01202	5,303 8,136 6,544	382,3422 6,56032	4,99834	1,75135	0,31003
2	SrSO ₄ 1,15779	5,393 8,336 6,846	307,7691 6,75163	5,14410	1,75135	0,31003
3	BaSO ₄ 1,35105	5,442 8,850 7,138	343,7782 7,00529	5,33737	1,75135	0,31003
4	RaSO ₄ 1,38269	5,458 8,906 7,199	349,9358 7,04687	5,36904	1,75136	0,31004

Структурные характеристики сульфатов щелочных металлов

Постоянство $r(S^{6+})$ подтверждает адекватность модели метаморфозы кристаллических структур в квазикубическую [2]. Согласие результатов расчетов (колонки 5 и 6) с данными, рассчитанными для сульфатов щелочных металлов, позволяет принять $r(S-O)=1,75135_{(1)}$ и $r(S^{6+})=0,31003_{(1)}$, полученными их рентгеновских данных семи веществ, такими же в сульфат ионах любых соединений.

Термохимические характеристики

Энтальпия разрушения кристаллической решетки [2] для сульфатов щелочноземельных металлов может быть рассчитана по уравнению:

$$\Delta H_{\kappa p} = 83,581728 z_{\rm K}^2 \cdot z_{\rm A}^2 \cdot f_1 + 103,19053 A_{\rm M} \cdot \kappa u \cdot z_{\rm K} \cdot z_{\rm A} \cdot f_2 \cdot r_{\rm P}^{-1}.$$

$$\Delta H_{\kappa p} = 83,581728 \cdot 2^2 \cdot 2^2 \cdot \left(1 + \frac{\sqrt{2}}{3}\right) \cdot \frac{1}{3} + 103,19053 \cdot 1,747565 \cdot 6 \cdot 2 \cdot 2 \cdot \frac{4}{3} \left(\sqrt{3} - 1\right) \left(1 + \frac{3}{8}\right)^{-1} \cdot r_{\rm P}^{-1}.$$

$$\Delta H_{\kappa p} = 655,907 + 18433,7176 r_{\rm P}^{-1}.$$
(8)

Исходные данные и результаты расчетов по уравнению 8 приведены в таблице 4.

Таблица 4

N⁰	MeSO ₄	$\Delta_f H^{\circ}(\mathrm{Me}^{2+},\Gamma)$	$-\Delta_f H^{\circ}(\text{MeSO}_4,\kappa)$	$\Delta H_{\rm kp},$	$\Delta_{f} H^{\circ} \left(\mathrm{SO}_{4}^{2-}, \Gamma \right)$
п/п	$r_{ m P}^{-1}$, табл. 3	[5]	[3, 4]	yp. (8)	yp. (9)
	1	2	3	4	5
1	$CaSO_4$	1925 695	1/136 283	1313 879	984 450
	0,2000664	1725,075	1450,205	+3+3,077	704,430
2	SrSO ₄	1792.280	1458.961	4239.376	984.577
	0,1943975	1172,200	1.00,901	1207,070	<i>y</i> o 130 <i>t t</i>
3	$BaSO_4$	1600 ///	1467 400	4109 615	982 771
	0,1873982	1077,777	1407,400	4107,015	<i>J</i> 02,771
4	RaSO ₄	1641 625	1/6/ 900	4089,242	982,717
	0,1862530	10+1,025	1404,700		

Энтальпии кристаллической решетки сульфатов щелочноземельных металлов

В колонку 5 помещены результаты расчетов энтальпии образования сульфат-ионов, вычисленные по классическому уравнению термодинамики применительно к нашему случаю:

$$\Delta_f H^{\circ} \left(\mathrm{SO}_4^{2-}, \Gamma \right) = \Delta H_{\mathrm{kp}} - \left[\Delta_f H^{\circ} \left(\mathrm{Me}^{2+}, \Gamma \right) \right] - \Delta_f H^{\circ} \left(\mathrm{Me} \mathrm{SO}_4, \kappa \right).$$
(9)

Величины $\Delta_f H^{\circ}(SO_4^{2-}, \Gamma)$, приведенные в таблице, хорошо согласуются между собой и с вычисленными для сульфатов щелочных металлов. Из расчетов для семи веществ получено $\Delta_f H^{\circ}(SO_4^{2-}, \Gamma) = 982,336 \pm 1,478$.

На сегодняшний день другие пути получения подобных данных с таким согласием с исходными экспериментальными величинами отсутствуют.

Библиографический список

1. Рябухин, А.Г. Эффективные ионные радиусы. Энтальпия кристаллической решетки. Энтальпия гидратации ионов: монография / А.Г. Рябухин. – Челябинск: Изд. ЮУрГУ, 2000. – 115 с.

2. Рябухин, А.Г. Математическая модель метаморфизма кристаллических структур в кубическую / А.Г. Рябухин // Вестник ЮУрГУ. Серия «Металлур-гия». – 2007. – Вып. 9. – № 21(93). – С. 3–6.

3. Термические константы веществ: Справочник в 10 вып. / под ред. В.П. Глушко. – М.: АН СССР. – ВИНИТИ, 1968–1978.

4. Справочник химика / под ред. Б.П. Никольского. – Л.: Химия, 1971. – Т. 1. – 1071 с.

Наука ЮУрГУ: материалы 68-й научной конференции Секции естественных наук

5. Груба, О.Н. Методика расчета энтальпии образования катионов металлов в газовой фазе / О.Н. Груба, А.Г. Рябухин // Наука ЮУрГУ: материалы 65-й научной конференции. Секции естественных наук. – Челябинск: Издательский центр ЮУрГУ, 2013. – С. 80–83.

<u>К содержанию</u>