СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ КРОВООБРАЩЕНИЯ В ГОРИЗОНТАЛЬНОМ И ВЕРТИКАЛЬНОМ ПОЛОЖЕНИИ ТЕЛА ДО И ПОСЛЕ ТРЕНИРОВКИ ДЗЮДОИСТОВ

А.П. Исаев, Т.В. Потапова*, В.В. Эрлих, Н.Б. Пястолова, А.В. Бобровский Южно-Уральский государственный университет, г. Челябинск *Тюменский государственный университет, г. Тюмень

Установленные диапазоны медленноволновой вариабельности кардиогемодинамики позволяют оценивать уровни локализации ключевых регуляторных процессов молекулярно-физиологического спектра. Однако предлагаемая классификация дает возможность расширять представления о многогранности составляющих, влияющих на регуляцию полифункциональной вариабельности организма в условиях экстремальных воздействий среды. Открываются возможности углубления знаний, влияния амплитудных компонентов реоволн сосудов и респираторных звеньев реоволн на интегральную регуляцию функционального состояния организма в относительном покое и при гравитационных воздействиях.

Ключевые слова: генез, диапазон, медленноволновая колебательная активность, гравитация, регуляция, реоволны, сердечно-сосудистая система, тренировочные занятия, тип реагирования, гуморально-гормональный, барорефлекторный, нейрогенный, внутрисердечный, доминирующий тип регуляции.

Спортивная борьба представляет повышенные требования к уровню развития статокинетической устойчивости (выведение из равновесия, броски, перемещение тела из стойки в партер, удержание и др.) в связи с изменением гравитационных воздействий.

Следует отметить, что регуляция функционального состояния сердечно-сосудистой системы (ССС) спортсменов в позах лежа и стоя значительно различается [5, 1, 7, 9]. Однако каждый вид спорта в связи с различными гравитационными воздействиями формирует специфические особенности [10, 12, 11, 3]. В этой связи возникает необходимость регистрации спектральных характеристик лежа и стоя как до, так и после тренировочных воздействий [8, 9].

Селекция, проведенная рабочей группой европейского кардиологического и американского обществ стимуляции и электрофизиологии и А.А. Астахов (1996), позволили выявить четыре диапазона (УНЧ, ОНЧ, НЧ, ВЧ) с адекватными частотами соответственно (< 0,003 Гц; 0,003–0,04 Гц; 0,04–0,15 Гц; 0,15–0,4 Гц) с качеством колебаний за 1 минуту (менее 0,18; 0,18–2,40; 2,40–9,00; 9,00–24,00) и переходом колебаний: > 5,5 мин (333,33 с); 25,00–333,33 с; 6,67–25,00 с; 2,50–6,67 с. Следовательно, наиболее распространены 5-минутные регистрации физиологических параметров, позволяющих оценивать вариабельность в 3-х диапазонах медленноволнового спектра. Медленноволновые диапазоны по А.А. Астахову варьируют в следующих границах:

УНЧ (0–0,025 Гц), ОНЧ (0,025–0,075 Гц); НЧ (0,075–0,15 Гц); ВЧ (0,15–0,5 Гц).

В генезе возникновения низкочастотных (НЧ) колебаний (0,1 Гц) в уточнении интегративных взглядов лежат механизмы сегментарного отдела ВНС. Аналогично в ультранизкочастотных УНЧ и очень низкочастотных ОНЧ генерируют механизмы надсегментарного уровня регуляции (кора головного мозга, гипоталамус, гипофиз) с привлечением гормонально-гуморальных факторов. Низкочастотный спектр регуляции доминирован S-PS влиянием ВНС и барорефлекторными механизмами. Высокочастотная регуляция включает внутрисердечные автономные миогенные механизмы и доминирование блуждающего нерва и дыхательных волн.

Регистрация значений ССС за 500 кардиоинтервалов и их спектральный анализ проводились на модифицированной диагностирующей системе «Кентавр». Оценка поликомпонентной вариабельности проводилась по следующим параметрам (общая мощность спектра обозначена как ОМС):

- OMC (Power) отражает уровень адаптации звена ССС и механизмы регуляции к эндогенным и экзогенным факторам;
- Мощность определялась в ус. ед. и процентах в 4-х диапазонах по А.А. Астахову [2].

Обследовались юные дзюдоисты в возрасте $17,06\pm1,20$ года, длиной тела $173,88\pm5,60$ см; массой тела $72,00\pm2,40$ кг; индексом тела -23,76 у.е.

Интегративная физиология

В табл. 1 представлены значения мощности и спектра колебаний ключевых звеньев ССС до и после нагрузок тренировочного занятия (ТЗ) дзюдоистов, носящего специальную направленность (80%).

Как следует из табл. 1, при смене позы лежа – стоя у дзюдоистов в значениях ВР (Ср Д) отмечались некоторые увеличения ОМС. Как до, так и после ТЗ показатели ОНЧ (Р2) соответственно доминировали (96.65 % и 98.69 %). Повышение абсолютных величин ОНЧ было статистически незначимое. Из сравниваемых данных можно заключить, что явно доминировал в регуляции надсегментарный гуморально-гормональный уровень регуляции, а затем в порядке ранжирования расположились барорефлекторные механизмы и S-PS влияния, которые снизились после нагрузки. Остальные уровни регуляции (УНЧ) проявлялись незначительно, а автономные миогенные факторы не проявлялись. Значительные сдвиги наблюдались в ОМС HR (ЧСС) (P < 0.01). В позе лежа явно преобладали ОНЧ колебания (74,72 %), а затем следовали НС [16,71 %] и ВЧ (8,18 %) диапазоны. После ТЗ их вклад в регуляцию уменьшил диапазон ОНЧ (P < 0,001). Спектр диапазонов регуляторных воздействий в порядке ранжирования расположился: ОНЧ, ВЧ, НЧ. Можно полагать, что регуляция ЧСС распределилась преобладающе между гуморально-гормональными, а также внутрисердечными и барорефлекторными механизмами, вносящими свой вклад поровну. Роль нейрогенных механизмов была незначительна, что свидетельствует о рациональном управлении сердечным ритмом спортсменов и адекватности нагрузок ТЗ функциональному состоянию.

В регуляции SV (УО) диапазона лежа соответственно распределились ОНЧ, НЧ, ВЧ. В позе стоя усилилась регуляция в границах ОНЧ колебаний, снизилась НЧ и повысилась в ВЧ диапазонах. Различия в позах лежа и стоя в абсолютных диапазонах находились в значимых величинах ОМС (P < 0.01), ОНЧ (P < 0.01), НЧ (P < 0.001). Следовательно, гуморально-гормональные механизмы регуляции УО доминировали, а затем следовали барорефлекторные и S-PS влияния, в меньшей сте-

Таблица 1 Спектральный анализ значений кровообращения в позе лежа и под воздействием ортопробы у юных дзюдоистов 16–19 лет до тренировочного занятия

Лежа до тренировки											
PAR		Power	P1	P2	P3	P4	% P1	% P2	% P3	% P4	
BP	M	19,700	0,018	19,040	0,642	0,000	1				
	m	5,838	0,001	3,687	0,113	0,000	0,091	96,650	3,259	0,000	
	V	29,636	3,175	19,367	17,623	0,000					
HR	M	33,042	0,028	24,690	5,522	0,422					
	m	4,838	0,001	2,845	0,947	0,354	0,085	74,723	16,712	8,480	
	V	14,643	4,082	11,523	17,174	83,886			*		
	M	402,882	0,054	224,142	158,012	6,158					
SV	m	154,138	0,005	61,179	40,867	5,360	0,013	55,635	39,220	5,132	
	V	38,259	9,524	27,295	25,863	87,041					
СО	M	2,136	0,052	1,272	0,602	0,060					
	m	0,846	0,007	0,345	0,154	0,052	2,434	59,551	28,184	9,831	
	V	39,620	13,187	27,134	25,534	86,667					
EF	M	8,426	0,036	5,472	2,624	0,346					
	m	0,859	0,004	0,546	0,359	0,228	0,427	64,942	31,142	3,489	
	V	10,193	11,111	9,973	13,698	65,896					
	M	1,800	0,038	0,656	0,648	0,510					
FW	m	0,241	0,002	0,067	0,058	0,160	2,111	36,444	36,000	25,444	
	V	13,397	4,511	10,192	8,995	31,373					
	M	51,636	0,108	6,818	22,030	0,612					
ATHRX	m	15,383	0,011	1,886	6,139	0,346	0,209	13,204	42,664	43,923	
	V	29,792	10,053	27,658	27,866	56,536					
	M	354,414	0,062	350,228	4,124	1,144					
ATOE	m	94,938	0,013	92,562	1,102	1,144	0,017	98,819	1,164	0,000	
	V	25,003	21,198	26,429	26,729	100,000					
	M	1765,976	0,140	20,368	971,400	1866,800					
RespX	m	165,093	0,013	5,502	163,899	407,690	0,008	1,153	55,006	43,832	
	V	9,349	8,980	27,014	16,872	21,839					
	M	203,392	0,042	123,470	16,092	22,282					
RespT	m	35,407	0,006	23,868	9,882	8,140	0,021	60,705	7,912	31,362	
-	V	17,408	14,286	19,331	61,412	36,532					

Окончание табл. 1

				Сто	я до трен	ировки				
PAR		Power Fm	P1	P2	P3	P4	%P1	%P2	%P3	%P4
BP	M	21,496	0,018	21,214	0,264	0,000				
	m	1,999	0,001	1,266	0,023	0,000	0,084	998,688	1,228	0,000
	V	9,299	3,175	5,969	8,874	0,000				
	M	1,470	0,001	0,617	0,400	2,802				
HR	m	5,144	0,002	2,158	1,400	2,208	0,039	41,952	27,216	27,488
İ	V	350,000	350,000	350,000	350,000	100,000		-		
	M	44,706	0,040	28,840	10,448	20,674				
SV	m	9,711	0,004	6,141	1,789	18,582	0,089	64,510	23,370	12,030
	V	21,722	10,000	21,294	17,124	89,881				
	M	0,314	0,038	0,210	0,044	0,210				
CO	m	0,087	0,004	0,051	0,010	0,186	12,102	66,879	14,013	7,006
	V	27,662	10,526	24,218	22,078	88,571				
	M	2,724	0,040	1,316	1,294	0,294				
EF	m	0,314	0,002	0,135	0,136	0,294	1,468	48,311	47,504	2,717
	V	11,517	5,714	10,248	10,510	100,000				
	M	1,130	0,044	0,450	0,502	0,458				
FW	m	0,102	0,003	0,071	0,053	0,232	3,894	39,823	44,425	11,858
	V	9,001	6,494	15,746	10,472	50,655				
	M	5,520	0,030	4,266	0,894	22,680				
ATHRX	m	1,856	0,002	0,991	0,093	22,666	0,543	77,283	16,196	5,978
	V	33,623	5,714	23,227	10,355	99,938				
	M	307,506	0,036	234,142	70,030	0,000				
ATOE	m	65,585	0,005	42,838	9,715	0,000	0,012	76,142	22,774	0
	V	21,328	12,698	18,296	13,873	0,000				
	M	1377,238	0,096	19,990	964,368	774,068				
RespX	m	881,050	0,008	16,756	603,964	286,070	0,007	1,451	70,022	28,520
	V	251,729	0,002	4,787	172,561	36,957				
	M	34,398	0,058	18,472	12,518	63,788				
RespT	m	5,822	0,011	3,271	1,737	21,260	0,169	53,701	36,392	9,739
	V	16,925	18,719	17,707	13,173	33,329				

пени автономные миогенные механизмы, особенно в положении лежа.

В регуляции СО (МОК) уровни регуляции были в порядке распределения аналогичны ЧСС, УО. При этом ОМС достоверно снизилась (P < 0.05) при смене позы лежа — стоя. Достоверные различия были при смене поз в диапазонах НЧ колебаний (P < 0.05). Заключая данные раздела исследования, следует отметить роль нейрогенных механизмов в регуляции МОК, которая в позе стоя возросла в 5 раз. В остальных предыдущих показателях уровень указанных механизмов регуляции исключительно мал.

В регуляции ЕF (ФВ) в позе лежа спектр регуляции в порядке воздействия механизмов был аналогичен предыдущим показателям ССС. Доминировали гуморально-гормональные диапазоны, затем следовали барорефлекторные, внутрисердечные нейрогенные механизмы в порядке распределения. В позе стоя ОМС существенно (Р < 0,01) снизилась, уменьшились ОНЧ воздействия, выросли НЧ, УНЧ колебания. Несколько упала роль ВЧ звеньев регуляции при этом абсолютные зна-

чения ОНЧ и НЧ достоверно снизились (Р < 0,01), а диапазоны ВЧ колебаний значимо не изменились. Роль нейрогенных механизмов в регуляции фракции выброса выросла в три с лишним раза. Регуляция ОМС FW диастолическая волна наполнения сердца при смене позы лежа - стоя значимо снизилась (P < 0,05). В регуляции FW одинаково проявились в позе лежа ОНЧ и НЧ диапазоны, затем следовали ВЧ и незначительно проявились нейрогенные механизмы (2,11 %). В позе стоя явно преобладали НЧ волны, затем были ОНЧ диапазоны, ВЧ (11,86 %) и УНЧ колебания (3,89 %). Усиление надсегментраного диапазона регуляции в позе стоя говорит об интегративном спектре регуляции с преобладанием соответственно стоя НЧ. ОНЧ и УНЧ колебаний.

В регуляции ОМС амплитуды сосудов (ATHRX) в позе лежа доминировали автономные миогенные механизмы и барорефлекторные при более низких значениях гуморально-гормональных факторов. В позе стоя ОМС ATHRX достоверно снизилась (Р < 0,001). В регуляции спектра стоя значения распределились соответственно с явным домини-

Интегративная физиология

рованием ОНЧ диапазонов (на 64,79 %), затем следовали НЧ и ВЧ диапазоны. Роль нейрогенных механизмов возросла более чем в два раза, но составили всего лишь 0,55 %.

В регуляции ОМС амплитуды реоволны при смене позы наблюдалось недостоверное увеличение показателей. В позе лежа регуляция приобрела диапазоны ОНЧ (76,14 %) и НЧ (22,77 %). После ТЗ явно доминировали гуморально-гормональные диапазоны регуляции АТОЕ и лишь в 1,16 % проявилась барорефлекторная регуляция.

Общая тенденция увеличения ОМС при смене позы лежа — стоя в значениях RespX была на уровне тенденции. Ранжирования диапазонов регуляции выявило преобладание НЧ и ВЧ диапазонов и незначительных проявлений ОНЧ колебаний (1,15 %) лежа. В позе стоя значительно усилилась регуляция НЧ диапазона и несколько снизились ВЧ колебания. При этом вклад вращений ОНЧ диапазон имел незначительное представительство (1,45 %).

В значениях RespT OMC при смене позы возросла (P < 0.01). В порядке ранжирования лежа до тренировки доминировали ОНЧ, ВЧ и НЧ диапазоны. В вертикальном положении спектр регуляции изменился: ОНЧ (53,70 %), НЧ (36,39 %) и ВЧ колебания (9,74 %).

Таким образом, наряду с общей направленностью повышения ОМС в компонентах ССС в значениях УО не наблюдалась векторная тенденция. Наибольшее влияние в регуляции звеньев ССС отводилось гуморально-гормональным механизмам (ОНЧ) и отношениях НЧ (EF, FW, HR, RespT, RespX). Наибольшее представительство этих диапазонов отмечалось в позе стоя.

В положении лежа через 10 минут после ТЗ ОМС произошло изменение всех звеньев гемодинамики по сравнению с фоновыми значениями. При этом существенные сдвиги отмечались в показателях УО (P < 0.01), МОК (P < 0.05), EF (P < 0.01), FW (P < 0.001), ATHRX (P < 0.01), RespT (P < 0.01). Можно полагать, что регулирующее влияние на ССС под воздействием напряженных нагрузок ТЗ вызвали адаптивно-компенсаторные изменения центральной и периферической гемодинамики. Механизмы регуляции в ближнем восстановительном периоде свидетельствуют о снижении напряжения и экономизации функций ССС. При этом показатели ВР и НЧ (частота сердцебиений) достоверно не различались с дорабочими значениями (Р < 0,05). Необходимо отметить, что после тренировки наблюдалось процентное увеличение ОНЧ и НЧ колебаний. Однако абсолютные величины этих диапазонов регуляции ВР были после ТЗ ниже, особенно НЧ колебания (Р < 0,01). Снизился процентный вклад ОНЧ диапазонов и повысились барорефлекторные воздействия. При этом процент ВЧ диапазонов снизился более чем в два раза. Абсолютные значения ОНЧ уменьшились значимо (P < 0.01), а НЧ увеличилось (P < 0.01)

При сравнении процентных показателей УО

после ТЗ лежа с фоновыми выявлено снижение гуморально-гормональных воздействий при увеличении вклада барорефлекторных механизмов. На этом фоне произошло некоторое увеличение диапазона внутрисердечных механизмов регуляции. Общая мощность спектра регуляции систолического объема в положении лежа после ТЗ достоверно снизилась (Р < 0,05). При этом ОМС МОК также значительно уменьшилась (Р < 0.01). Следовательно, повысились в позе лежа после ТЗ барорефлекторная регуляция, нейрогенные механизмы и снизились гуморально-гормональные воздействия и внутрисердечные влияния. Вероятно, регуляция интегрального показателя работоспособности миокарда вследствие напряженных нагрузок подверглась нейрогенному надсегментарному и барорефлекторному воздействию на фоне исчерпания факторов гуморально-гормонального спектра действия.

Это подтверждают результаты снижения вклада в регуляцию автономных миогенных механизмов. Вероятно произошло уменьшение действия на регуляцию МОК молекулярно-физиологических факторов (К+, Mg+), влияющих на сократимость миокарда. Об этом убедительно свидетельствуют значения ОМС фракции выброса достоверно сниженные в позе лежа под воздействием нагрузок ТЗ. Симватно снижались гуморальногормональные факторы в два раза и идентично повышались барорефлекторные и внутрисердечные. При этом уменьшалась ОМС лиастолической волны наполнение сердца (Р < 0,001), что свидетельствует об уменьшении венозного возврата при ещё более низком вкладе в регуляцию FW гуморально-гормональных факторов и внутрисердечном повышении барорефлекторных, нейрогенных механизмов.

Полученные данные подтверждают исследования Г.Н. Кассиля [6], А.А. Виру, П.К. Кырге [4] о том, что чрезмерные, неадекватные индивидуальным возможностям организма нагрузки ингибируют молекулярно-физиологические процессы.

Амплитуда револн крупных сосудов после ТЗ в позе лежа существенно снижалась (P < 0,01). Значительно увеличился в пять раз спектр регуляции гуморально-гормональной составляющей. При этом наблюдалось некоторое снижение барорефлекторного вклада (в 2,63 раза).

Автономные миогенные воздействия уменьшались в 7,35 раза по сравнению с аналогичными данными до ТЗ. Роль нейрогенных механизмов повысилась в 2,6 раза. Мощность спектра мелких сосудов по сравнению с аналогичными данными до ТЗ значительно понизилась в 2,25 раза. Снизились по сравнению с дорабочими, гуморальногормональные факторы (в 62,27 раза) в интеграции регулирующих воздействий. Значительно повысились (в 3,7 раза) барорефлекторные вклады, а роль нейрогенных факторов возросла на 14,92 % по сравнению с аналогичными до ТЗ (0 %), значения

ОМС RespX несколько уменьшились. Регуляция приобрела преимущественно интракардиальную направленность и возросла по сравнению с аналогичной до ТЗ (лежа) в 1,15 раз. Снижение барорефлекторных и гуморально-гормональных вкладов соответственно снизилось в 1,13 и 1,66 раза. Роль нейрогенных факторов была в сравниваемых позах ничтожно мала (0,008 и 0,007 %).

Сравнение значений RespT до и после тренировки в позе лежа выявило достоверное снижение ОМС после ТЗ (P < 0,01). Явно выросли после ТЗ автономные миогенные механизмы регуляции (в 1,72 раза), барорефлекторные (в 4,28 раза), нейрогенные (в 12,19 раз), а гуморально-гормональные существенно снизились (в 5,16 раз).

Мы провели сравнение показателей медленноволновой колебательной активности в горизонтальном и вертикальном положении после ТЗ (табл. 2). Показатели ОМС ВР в позе лежа — стоя после ТЗ снизились. Спектр регуляции доминантно относился к диапазону гуморально-гормональных факторов (98,69 %), а вклад барорефлектор-

ных воздействий составил 1,23 %. Нейрогенные надсегментарные влияния были незначительны (9,08 %). После ТЗ спектр регуляции по своей архитектонике не изменился. Несколько возросли гуморально-гормональные воздействия (на 0,67 %) и снизился вклад объемрегулирующих влияний (на 0,71 %) и нейрогенных на 0,07 %. После ТЗ значительно увеличилась вариабельность значений ОМС, Р2, Р3.

Значения ОМС НК при смене позы менее достоверно повысилась (P < 0,01). В порядке ранжирования диапазоны регуляции в позе лежа после ТЗ распределились: гуморально-гормональные, внутрисердечные и барорефлекторные. Стоя после тренировки вклад в регуляцию несколько изменился: объемрегулирующие, гуморальногормональные и внутрисердечные факторы. Вклад последних после ТЗ снизился в 7,84 раза, а объемрегулирующих влияний повысился в 1,80 раза. Общая мощность спектра SV существенно снизилась при смене позы после ТЗ (Р < 0,05). Что касается диапазонов спектра регуляции, то они в по-

Таблица 2 Спектральные характеристики кровообращения у юных дзюдоистов в горизонтальном и вертикальном положении после тренировочного занятия

				Леж	а до трени	ровки				
PAR		Power	P1	P2	P3	P4	% P1	%P2	%P3	%P4
BP	M	21,496	0,018	21,214	0,264	0,000				
	m	1,999	0,001	1,266	0,023	0,000	0,084	98,688	1,228	0,000
	V	9,299	3,175	5,969	8,874	0,000		•		
HR	M	5,144	0,001	0,617	0,400	0,404				***
	m	1,470	0,002	2,158	1,400	0,272	0,039	41,952	27,216	27,488
	V	65,900	350,000	350,000	350,000	67,327				
SV	M	44,706	0,040	28,840	10,448	5,378				
	m	9,711	0,004	6,141	1,789	5,378	0,089	64,510	23,370	12,030
	V	21,722	10,000	21,294	17,124	100,000				
CO	M	0,314	0,038	0,210	0,044	0,022				
	m	0,087	0,004	0,051	0,010	0,001	12,102	66,879	14,013	7,006
	V	27,662	10,526	24,218	22,078	4,545				
EF	M	2,724	0,040	1,316	1,294	0,074				
	m	0,314	0,002	0,135	0,136	0,064	1,468	48,311	47,504	2,717
	V	11,517	5,714	10,248	10,510	86,486				
FW	M	1,130	0,044	0,450	0,502	0,134				
	m	0,102	0,003	0,071	0,053	0,009	3,894	39,823	44,425	11,858
	V	9,001	6,494	15,746	10,472	6,567				
ATHRX	M	5,520	0,030	4,266	0,894	0,330				
	m	1,856	0,002	0,991	0,093	0,014	0,543	77,283	16,196	5,978
	V	33,623	5,714	23,227	10,355	4,242				
ATOE	M	307,506	0,036	234,142	70,030	3,298				
	m	65,585	0,005	42,838	9,715	0,298	0,012	76,142	22,774	1,072
	V	21,328	12,698	18,296	13,873	9,036				
RespX	M	1377,238	0,096	19,990	964,368	392,784				
	m	881,050	0,008	16,756	603,964	77,128	0,007	1,451	70,022	28,520
	V	251,729	0,002	4,787	172,561	19,636				
RespT	M	34,398	0,058	18,472	12,518	3,350				
	m	5,822	0,011	3,271	1,737	1,230	0,169	53,701	36,392	9,739
	V	16,925	18,719	17,707	13,873	36,716				

Окончание табл. 2

				Сто	я до трени	ровки				
PAR		Power	P1	P2	P3	P4	%P1	%P2	%P3	%P4
		Fm								
BP	M	14,614	0,018	14,520	0,076	0,000				
	m	4,791	0,001	2,835	0,010	0,000	0,123	99,357	0,520	0,000
	V	32,783	3,175	19,528	13,534	0,000				
HR	M	24,866	0,038	11,744	12,212	0,872				
	m	2,522	0,004	0,928	2,429	0,456	0,153	47,229	49,111	3,507
	V	10,141	10,526	7,902	19,887	52,294				
SV	M	23,856	0,038	9,834	12,294	1,690				
	m	2,727	0,001	0,753	1,666	0,874	0,159	41,222	51,534	7,084
	V	11,430	3,008	7,653	13,549	51,716				
CO	M	11,430	3,008	7,653	13,549	512,716				
	m	0,208	0,064	0,034	0,094	0,016	30,769	16,346	45,192	7,692
	V	0,016	0,003	0,003	0,010	0,008				
EF	M	4,126	0,044	1,308	2,510	0,264				
	m	0,273	0,003	0,102	0,244	0,222	1,066	31,701	60,834	6,398
	V	6,606	7,792	7,820	9,721	84,091				
FW	M	0,662	0,048	0,230	0,274	0,110				
	m	0,058	0,003	0,028	0,012	0,048	7,251	34,743	41,390	16,616
	V	8,804	7,143	12,174	4,380	43,636				
ATHRX	M	2,466	0,084	1,200	0,970	0,212				
	m	0,483	0,013	0,280	0,198	0,202	3,406	48,662	39,335	8,597
	V	19,581	14,966	23,333	20,442	95,283				
ATOE	M	155,534	0,038	67,844	64,440	23,212				
	m	26,983	0,004	9,539	16,878	19,984	0,054	43,620	41,431	14,924
	V	17,349	10,526	14,061	26,192	86,093				
RespX	M	1578,080	0,110	10,974	768,752	798,244				
-	m	565,562	0,005	1,807	130,054	285,046	0,007	0,695	48,714	50,583
	V	16,828	4,156	16,470	16,914	35,709				
RespT	M	45,322	0,116	5,328	15,362	24,516				
	m	10,410	0,015	0,781	3,496	8,318	0,256	11,756	33,895	54,093
	V	22,968	13,300	14,661	22,757	33,929				

рядке ранжирования распределились в горизонтальном положении соответственно: гуморальногормональные, барорефлекторные и миогенные механизмы. В вертикальном положении спектр регуляции в порядке распределения сместился в сторону доминирования барорефлекторных факторов (в 2,21 раза) при снижении гуморально-гормональных воздействий в 1,57 раза и миогенных механизмов в 1,70 раза. В позе стоя значительно уменьшилась вариабельность изучаемых показателей. В исследовании отмечались низкие значения ОМС сердечного выброса незначительно изменяющиеся при смене положения тела. Наблюдалось в позе лежа следующее распределение регуляции МОК: гуморально-гормональные, барорефлекторные, нейрогенные и миогенные механизмы.

В позе стоя после ТЗ изучаемые диапазоны спектра регуляции сердечного выброса приобрели следующую последовательность: объемрегулирующие (увеличились в 3,23 раза), нейрогейнные (возросли в 2,54 раза), гуморально-гормональные снизились в 4,09 раза. Почти не изменились внутрисердечные факторы.

Общая мощность спектра ЕF достоверно повышалась при смене позы лежа — стоя после ТЗ (Р < 0,01). Регуляция сократительности миокарда лежа почти в равной степени осуществлялась гуморально-гормональными и объемрегулирующими факторами. В незначительной степени внутрисердечными и нейрогенными воздействиями. В вертикальном положении вектор регуляции сместился к объемрегулирующим факторам (увеличился в 7,26 раза). Гуморально-гормональные влияния уменьшились в 1,52 раза. Внутрисердечные механизмы регуляции повысились в 2,35 раза, а нейрогенные влияния несколько снизились (в 1,38 раза).

Значения ОМС диастолической волны наполнения сердца существенно снизились в позе стоя (P < 0,01). Вклад в регуляцию венозного возврата в позах лежа — стоя после ТЗ дифференцирован в следующей последовательности: объемрегулирующие, гуморально-гормональные, миогеные и нейрогенные механизмы. Повысились стоя и внутрисердечные и нейрогенные факторы.

Значения ОМС ATHRX снизились под воздействием ортопробы (P < 0,05). При этом лежа и

стоя доминировал гуморально-гормональный (ГГ) спектр, затем следовал барорефлекторный и миогенный вклад. Однако ГГ спектр при ортостазе снизился в 1,59 раза, объемрегулирующий — увеличился в 2,43 раза. Факторы внутрисердечного и нейрогенного механизмов соответственно повысились в 1,44 и 6,27 раза.

Воздействие ортопробы после ТЗ вызвало значимое снижение ОМС АТОЕ (P < 0,05). Спектры регуляции лежа соответственно распределились: ГГ, объемрегулирующие, миогенные. В позе стоя при том же порядке распределения вкладов регуляции ГГ влияния снизились в 1,75 раза, объемрегулирующие повысились в 1,82 раза, а внутрисердечные в 13,12 раза.

Общая мощность спектра RespT незначительно повысилась при ортостазе. В позе лежа в порядке значимости доминировал вклад объемрегулирующих и миогенных факторов. В позе стоя преобладали миогенные и объемрегулирующие механизмы. Роль объемрегулирующих вкладов снизилась при ортопробе в 1,44 раза, а внутрисердечных повысилась в 1,77 раза.

Существенных изменений ОМС RespT под воздействием ортостаза не произошло. Вектор регуляции RespT лежа соответственно распределился: ГГ, объемрегулирующие и миогенные. В позе стоя расположение факторов регуляции стоя после ТЗ следующим образом: миогенные, объемрегулирующие и ГГ воздействия. Значительно увеличились при смене позы внутрисердечные механизмы (в 15,55 раза), а ГГ вклад снизился в 4,57 раза, объемрегулирующие в 1,07 раза.

Таким образом, нами рассмотрен кумулятивный эффект тренировочных нагрузок на звенья центральной и периферической гемодинамики как до, так и после ТЗ. До ТЗ лежа наблюдалось доминирование вклада ГГ регуляции АТОЕ, НR, ЕF, RespT, МОК. Весом вклад объемрегулирующих факторов в регуляции RespX, ATHR, SV, FW, EF; внутрисердечных: RespX, ATHRX, FW. Следует отметить интегративное воздействие ключевых вкладов EF, FW, ATHRX, RespT, RespX. Можно полагать, что звенья системной регуляции детерминированы венозным возвратом, сократительностью миокарда, амплитудой реоволн сосудов и дыхательных волн.

В позе стоя до тренировки был приоритетен вклад ГГ воздействий соответственно в регуляции ВР, АТНКХ, АТОЕ, МОК, УО, RespT, EF, HR. Факторы объемрегулирующих воздействий в порядке ранжирования составили: RespX, EF, FW, RespT, HR, SV, ATOE. Из числа миогенных факторов целесообразно отметить в порядке значимости: RespX, HR, SV, FW, RespT, MOK, ATHRX.

Итак, можно полагать, что в позе стоя до ТЗ регуляция приобрела интегративное воздействие на амплитуду дыхательных волн, сократимость миокарда, венозный возврат, частоту сердцебиений, ударный объем, сердечный выброс, амплиту-

ду реоволн сосудов. В позе стоя после ТЗ в большинстве изучаемых показателей доминировали ГГ, влияя соответственно в порядке ранжирования на следующие показатели: ВР, НR, АТНКХ, АТОЕ, SV, FW, EF, CO, RespT. Вклад объемрегулирующих влияний распределился: , EF, SV, HR, RespX, CO, FW, АТОЕ, АТНКХ, RespT. Факторы нейрогенной регуляции расположились: CO, EW, ATHRX, EF, а внутрисердечные: RespT, RespX, FW, ATOE, ATHRX, CO, SV, EF, HR.

Следовательно, кумулятивный эффект всех предыдущих и на фоне одного ТЗ вызвал интегративную регуляцию 9 показателей ГТ и объемрегулирующего аспекта, 4 — нейрогенного характера и 10 — миогенного аспекта.

Во всех уровнях регуляции проявлялись механизмы венозного возврата, частоты сердцебиений, амплитуды реоволн сосудов, сократимости миокарда, дыхательных волн.

Действительно, адаптация ССС многогранна и включает поступление крови в миокард, его сократимость, результирующие значения гемодинамики (УО, МОК), обозначающие объемный кровоток. Спектральный анализ показал, что ОНЧ и НЧ колебания сочетают в себе вариабельность интегральных звеньев кровообращения. Колебания сердечного выброса в диапазонах, связанных с вегетативной активностью периферических компонентов, зависят от параметров центральной регуляции (ЕГ, УО, СрД).

Следует отметить, что по современным представлениям регуляция в системе кровообращения происходит вследствие молекулярно-физиологических, гуморально-гормональных и нейрогенных воздействий на систему крови и сосудов, вследствие изменений вариативности ВНС (центральный периферический отделы), внутрисердечных сдвигов миогенного характера происходят изменения в соединительной ткани (кровяной, мышечной, жировой, нервной) и всей активной мезенхиме, влияющей косвенно на регуляторные процессы кардиогемодинамики. Установленные хронотропные влияния на функцию миокарда вызывали урежение HR в покое, увеличение вклада PS факторов и снижение S воздействий при выраженной автоматизации управления.

Спектральный анализ кровообращения обнаружил в покое и при воздействии ортопробы преобладание ОМС ударного объема над аналогичной частотой сердцебиений, которое нарушается в позе стоя после кумулятивных воздействий ТЗ. Это подтверждает ключевую роль УО в обеспечении сердечного выброса у спортсменов.

Наблюдается интеграция в регуляции надсегментарного (сосудодвигательного) и нейрогенного и блуждающего нерва внутрисердечного спектра действия на ключевые характеристики миокарда (МОК) под влиянием ортостаза как до, так и после кумулятивного эффекта нагрузки ТЗ. Доминирование молекулярно-физиологических факторов

Интегративная физиология

(ГГ) отмечалось в биорегуляции артериального давления, усиливающегося под воздействием ортостаза в наибольшей степени после ТЗ. Можно полагать, что активизируются катехоламиновые и ренинангинотензиновые звенья у подростков спортсменов в завершающей фазе пубертата при воздействии мышечными и психологическими нагрузками. Относительно стабильная ОМС под воздействием ортпробы до ТЗ была в значениях BP, FW, ATOE, RespX, а после тренировочного занятия: BP, CO, RespX, RespT. Можно полагать, что проявляются относительно стабильные регуляторы центрального и дыхательного происхождения. Известно, что сосуды имеют приоритеты в диапазонах медленных и дыхательных волн, а сохранение PS влияний на сердце свидетельствует о наличии резервов в регуляции миокарда.

Литература

- 1. Адаптация человека к спортивной деятельности / А.П. Исаев, С.А. Личагина, Р.У. Гаттаров и др.; науч. ред. Г.Г. Наталов. — Ростов н/Д.: РГПУ, 2004. — 236 с.
- 2. Астахов, А.А. Физиологические основы биоимпеданеного мониторинга гемодинамики в анестезиологии (с помощью системы КЕНТАВР): учеб. пособие для врачей и анестезиологов: 132 т. / А.А. Астахов. Челябинск: Микролюкс, 1996. I.I. 174 с.
- 3. Бахарева, А.С. Механизмы оптимизации системы кровообращения лыжниц-гонщиц под влиянием систематических физических нагрузок / А.С. Бахарева // Адаптация биологических систем к естественным и экстремальным факторам среды: материалы II междунар. науч.-практ. конф. Челябинск: Изд-во ЧГПУ, 2008. Т. 2. С. 336—340.
- 4. Виру, А.А. Грмоны и спортивная работоспособность / А.А. Виру, П.К. Кырге. — М.: Физкультура и спорт, 1983. — 159 с.
 - 5. Исаев, А.П. Функциональные критерии ге-

- модинамики в системе тренировки спортсменов (индивидуалиазация, отбор, управление): учеб. пособие / А.П. Исаев, А.А. Астахов, Л.М. Куликов. Челябинск: ЧГИФК, ЧГИУВ, 1993. 170 с.
- 6. Кассиль, Г.Н. Адаптация к спортивной деятельности в свете нейро(вегетативно) — гуморально-гормональной регуляции / Г.Н. Кассиль // Физиология спорта: тез. докл. XVIII Всесоюз. конф. — М., 1986. — С. 93.
- 7. Колебательная активность показателей функциональных систем организма спортсменов и детей с различной двигательной активностью / А.П. Исаев, Е.В. Быков, А.Р. Сабирьянов и др.; под науч. ред. А.П. Исаева. Челябинск: ЮУрГУ, 2005. 268 с.
- 8. Личагина, С.А. Физиологические механизмы адаптации учащихся к физиологическим нагрузкам здоровьесберегающей направленности: дис. ... канд. пед. наук / С.А. Личагина. Курган, 2002. 165 с.
- 9. Потапова, Т.В. Адаптивно-компенсаторные реакции организма юных спортсменов на нагрузки прогрессивной тренировки и восстановления: монография / Т.В. Потапова, В.В. Эрлих, А.М. Миртумян / под науч. ред. А.П. Исаева. Тюмень: Изд-во ТГУ, 2008. 344 с.
- 10. Романов, Ю.Н. Физиологические критерии эффективности подготовки юных кикбоксеров при реализации целевой комплексной программы: дис. ... канд. биол. наук / Ю.Н. Романова. Челябинск, 2007. 147 с.
- 11. Эрлих, В.В. Состояние кардиореспираторной системы юношей-пловцов с различной направленностью соревновательной деятельности: дис. ... канд. биол. наук / В.В. Эрлих. Челябинск, 2007. 143 с.
- 12. Юмагуен, В.Р. Механизмы адаптации функционального состояния кардиореспираторной и нервномышечной систем у кикбоксеров высокой и высшей квалификации: дис. ... канд. биол. наук / В.Р. Юмагуен. Челябинск, 2008. 140 с.

Поступила в редакцию 6 апреля 2009 г.