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ON A HEAT AND MASS TRANSFER MODEL
FOR THE LOCALLY INHOMOGENEOUS INITIAL DATA
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We consider a model case of the problem of heat di�usion in a homogeneous body
with a special initial state. The peculiarity of this initial state is its local inhomogeneity.
That is, there is a closed domain Ω inside a body, the initial state is constant out of the
domain. Mathematical modelling leads to the problem for a homogeneous multi-dimensional
di�usion equation. We construct the boundary conditions on the boundary of the domain Ω,
which can be characterized as "transparent" boundary conditions. We separately consider
a special case � a model of redistribution of heat in a uniform linear rod, the side surface
of which is insulated in the absence of (internal and external) sources of heat and of locally
inhomogeneous initial state.

Keywords: di�usion equation; homogeneous body; initial state; local inhomogeneity;

transparent boundary conditions.

Introduction. It is well known that the heat transfer process inside the solid body is a
transfer of energy, taking place between di�erent sections of the bodies and having di�erent
temperatures. In practice, while considering "calm" processes, from the three methods of
heat distribution (thermal conductivity, convection and thermal radiation) it is su�cient
to consider only the thermal conductivity (di�usion).

Heat conduction and di�usion problems have wide practical application. The ability
to model and solve such problems provides obtaining important information about the
process. Modelling of processes described by the heat equation is the seriously researched
�eld of mathematical modelling. However, as the model problems with classic initial-
boundary conditions are usually used. Using of non-local boundary conditions although
sometimes allows describing the processes more accurately but signi�cantly complicates the
mathematical models. Thereby the study of mathematical models of thermal conductivity
with non-local initial-boundary conditions is a relevant problem.

The aim of this paper is to demonstrate the using of non-local boundary conditions
of complex (integral) form for modelling a special case of heat transfer problems with a
special initial state. The peculiarity of this initial state is its local inhomogeneity. That is,
there is a closed domain Ω inside the body, the initial state is constant out of the domain.

We demonstrate a general idea of the considered problem on a simple example of
one-dimensional heat conduction. As a model body we choose a uniform linear rod, the
side surface of which does not conduct heat (insulated) in the absence of (internal and
external) sources of heat. It's clear that if at the initial time the rod is heated unevenly
then there will be a redistribution of heat and its temperature is eventually equalized. In
case when in the selected dimensionless coordinates the length of the rod is large enough,
then the process is described by the classical initial problem for the heat equation in a
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half-plane R2
+ = {−∞ < x <∞, t > 0}

∂

∂t
u(x, t)− a2

∂2

∂x2
u(x, t) = 0, (1)

u(x, 0) = u0(x), −∞ < x <∞, (2)

where a is a heat coe�cient, and u0(x) is an initial temperature distribution.
The solution of problem (1) � (2) exists, is unique and expressed by the surface

potential

u(x, t) =
1

2a
√
πt

∫ ∞

−∞
e−

(x−ξ)2

4a2t u0(ξ)dξ. (3)

We consider a special case of the problem when the initial state is locally
inhomogeneous. For our case it means that in the selected dimensionless coordinates the
initial state u0(x) ≡ 0 out of the interval x ∈ (0, 1). Then from (3) we obtain the solution
of problem (1) � (2) in this particular case

u(x, t) =
1

2a
√
πt

∫ 1

0

e−
(x−ξ)2

4a2t u0(ξ)dξ. (4)

In practice we often have to deal with problems in which we are interested in the
distribution of temperature only in a single piece of the rod, it is logical to consider the
heat problem only in a limited segment of the rod 0 ≤ x ≤ 1 for t ≥ 0. Thereby we come to
the consideration of equation (1) in a domain D = {0 < x < 1, t > 0} bounded with space
variables , with initial condition (2). For unique de�nition of a solution in D it's necessary
to set additionally the boundary conditions on the boundary of the cylinder ∂D× (t ≥ 0).
For our case it is necessary to set additionally the boundary conditions at x = 0 and x = 1
for all t ≥ 0.

Therefore, there arises a problem of de�ning of such boundary conditions for equation
(1) with the initial condition (2), which uniquely de�ne the solution in the form (4). These
boundary conditions must provide possibility for such smooth continuation of the solution
beyond the spatial boundaries of D, that the continued function is also a solution of the
heat equation (1). Such boundary conditions are called "transparent boundary conditions".

In our work [1] we constructed boundary conditions for a volume harmonic potential.
As it turned out, these boundary conditions describe the long known in theoretical physics
e�ect of "transparent boundary conditions", skipping outgoing waves and re�ecting the
incoming waves [2]. The existence of such boundary conditions of the volume potential
allows reducing the problem of Sommerfeld radiation conditions in in�nite domain to
a problem in a bounded domain and using e�ectively the numerical methods [3]. This
boundary condition was successfully used to compute in explicit form of eigenvalues and
eigenfunctions of the volume potential in the ball [1, 2]. In [4] a boundary condition of
the heat volume potential in not cylindrical domain was constructed. In [5] we considered
the questions about constructing of the boundary conditions for integral operators in the
general form. In all these works the questions of constructing of boundary conditions
for functions being the solutions of inhomogeneous equations were considered. Unlike
the above-mentioned works in this article we consider the case of a non-homogeneous
di�erential equation.
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1. Formulation of the Problem. Let Ω ⊂ Rn be a bounded domain with su�ciently
smooth boundary ∂Ω. By D denote a cylindrical domain D = Ω× (0, T ). In D consider a
surface heat potential

u =

∫
Ω

εn(x− ξ, t)u0(ξ)dξ, (5)

where εn(x, t) is a fundamental solution of the heat equation

♢u ≡
(
∂

∂t
− a2△x

)
u = 0, (6)

which has the form [6, p. 199]

εn(x, t) =
θ(t)

(2a
√
πt)n

e−
|x|2

4a2t .

It is well known that for u0 ∈ C(Ω), u0
∣∣
∂Ω

= 0, the surface heat potential (5) in domain

D is in�nitely di�erentiable function, u ∈ C(D) and satis�es equation (6) and the initial
condition

u(x, 0) = u0(x), x ∈ Ω. (7)

Naturally there arises a question on boundary conditions of the surface potential. That
is, it is necessary to �nd additional conditions (not dependent on u0(x)), which uniquely
de�ne function (5) together with equation (6) and the initial condition (7).

2. Formulation and Proof of the Main result

Theorem 1. Let u0 ∈ C2+β(Ω) and

u0
∣∣
∂Ω

= 0,
∂u0
∂ν

∣∣
∂Ω

= 0,
∂2u0
∂ν2

∣∣
∂Ω

= 0.

Then the surface heat potential (5) satis�es the lateral boundary condition

u(x, t)

2
−a2

∫ t

0

dτ

∫
∂Ω

(
∂εn
∂νξ

(x− ξ, t− τ)u(ξ, τ)− εn(x− ξ, t− τ)
∂u

∂νξ
(ξ, τ)

)
dSξ = 0, (8)

where x ∈ ∂Ω, t ∈ [0, T ], ∂
∂νξ

denotes a normal derivative on ∂Ω (on the direction of the

outer normal in respect to the volume D normal).
Conversely, if u(x, t) ∈ C2+β,1+β(D) is a classical solution of (6), satisfying the initial

condition (7) and the lateral boundary condition (8), then u(x, t) is uniquely de�ned and
it is given in the form of the surface potential (5).

Proof. By direct calculation at x ∈ Ω, t ∈ (0, T ), δ > 0 it is easy to see that the identities
are valid∫ t−δ

0

dτ

∫
Ω

εn(x−ξ, t−τ)♢ξ,τu(ξ, τ)dξ =
∫
Ω

εn(x−ξ, δ)u(ξ, t−δ)dξ−
∫
Ω

εn(x−ξ, t)u(ξ, 0)dξ+

+a2
∫ t−δ

0

dτ

∫
∂Ω

(
u(ξ, τ)

∂

∂νξ
εn(x− ξ, t− τ)− εn(x− ξ, t− τ)

∂

∂νξ
u(ξ, τ)

)
dSξ. (9)
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By virtue of that

lim
δ→0

∫
Ω

εn(x− ξ, δ)u(ξ, t− δ)dξ = u(x, t),

taking into account (6) and (7), for the surface potential (5) at δ → 0 from (9) we obtain
the identity

a2
∫ t−δ

0

dτ

∫
∂Ω

(
u(ξ, τ)

∂

∂νξ
εn(x− ξ, t− τ)− εn(x− ξ, t− τ)

∂

∂νξ
u(ξ, τ)

)
dSξ = 0, (10)

being valid for all (x, t) ∈ D. Now, passing to the limit at x→ ∂Ω and using the property
of potential jump on the boundary, from (10) we get (8).

Conversely, we show that the classical solution of (6), satisfying the initial condition
(7) and the lateral boundary condition (8), is unique. Let U ∈ C2+β,1+β(D) be a solution
of (6) � (8) with the homogeneous initial condition (7).

For such solution from (9) at δ → 0 we get the identity

U(x, t) + a2
∫ t

0

dτ

∫
∂Ω

(
U(ξ, τ)

∂

∂νξ
εn(x− ξ, t− τ)− εn(x− ξ, t− τ)

∂

∂νξ
U(ξ, τ)

)
dSξ = 0,

(11)
valid for all (x, t) ∈ D. Now, passing to the limit at x → ∂Ω, taking into account the
boundary condition (8), we obtain, that U

∣∣
∂Ω

= 0. Consequently, U(x, t) is the solution of
the �rst initial-boundary problem for the heat equation in D with homogeneous data. By
virtue of the uniqueness of its solution we obtain that U(x, t) ≡ 0. Therefore the classical
solution of equation (6), satisfying the initial condition (7) and the lateral boundary
condition (8) is unique.

The theorem is proved.

2

3. One-Dimensional Case. Consider a special case of the one-dimensional heat potential
(4) in domain D = {0 < x < 1, t > 0}, with the initial condition (2). For unique de�nition
of the solution of the heat equation (1) in D from Theorem 1 we �nd boundary conditions
on the boundary: when x = 0 and x = 1 for all t ≥ 0. In this case the boundary of the
domain Ω is doubly connected and the integral by the boundary turns into a sum of two
summands.

In one-dimensional case the fundamental solution of (1) has the form

ε1(x− ξ, t− τ) =
θ(t)

2a
√
π(t− τ)

e
− (x−ξ)2

4a2(t−τ) .

Computing

∂

∂ξ
ε1(x− ξ, t− τ) = θ(t)

x− ξ

4a3
√
π(t− τ)3/2

e
− (x−ξ)2

4a2(t−τ) .

It is easy to see that
∂

∂ξ
ε1(x− ξ, t− τ)

∣∣
x=ξ

= 0.

Now as the
∂

∂νξ

∣∣
ξ=0

= − ∂

∂ξ

∣∣
ξ=0

,
∂

∂νξ

∣∣
ξ=1

=
∂

∂ξ

∣∣
ξ=1

,
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then the boundary conditions (8) have the form

u(0, t)− a
t∫
0

1√
π(t−τ)

ux(0, τ)dτ + a
t∫
0

e
− 1

4a2(t−τ)√
π(t−τ)

(
u(1,τ)

2a2(t−τ) + ux(1, τ)
)
dτ = 0, (12)

u(1, t)− a
t∫
0

1√
π(t−τ)

ux(1, τ)dτ + a
t∫
0

e
− 1

4a2(t−τ)√
π(t−τ)

(
u(0,τ)

2a2(t−τ) + ux(0, τ)
)
dτ = 0. (13)

Thus, the model of heat redistribution in one-dimensional rod, the side surface of
which is insulated, in the absence of (internal and external) sources of heat and locally
inhomogeneous initial state is described by the initial-boundary problem for the heat
equation (1) in the domain D = {0 < x < 1, t > 0}, with initial condition (2) and
the non-local boundary conditions (12) and (13). This initial-boundary value problem is
correct, that is, its solution exists, is unique and is represented by the surface potential
(4).

Conclusion. In this work we have considered one mathematical problem, arising in
modelling of the process of the heat redistribution in a homogeneous solid body. The
peculiarity of the initial state is its local inhomogeneity. This inhomogeneity has been
characterized by the fact that in the selected dimensionless coordinates the domain,
the initial state of which is nonzero (we denote it by Ω), is small with respect to the
total volume of the body. The consideration has been reduced to the initial-boundary
value problem for the heat equation in a cylindrical domain Ω × (0, T ) with non-
local (integral form) boundary conditions by spatial variables. These founded non-local
boundary conditions describe the well known in theoretical physics e�ect of "transparent
boundary conditions", which skip the heat di�usion through the boundary without
restrictions.
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ÎÁ ÎÄÍÎÉ ÌÎÄÅËÈ ÒÅÏËÎÌÀÑÑÎÏÅÐÅÍÎÑÀ
ÏÐÈ ËÎÊÀËÜÍÎ ÍÅÎÄÍÎÐÎÄÍÛÕ
ÍÀ×ÀËÜÍÛÕ ÄÀÍÍÛÕ

Ò.Ø. Êàëüìåíîâ, Ã.Ä. Àðåïîâà

Ðàññìàòðèâàåòñÿ ìîäåëüíûé ñëó÷àé çàäà÷è î òåïëîâîé äèôôóçèè â îäíîðîäíîì
òåëå, ïðè ñïåöèàëüíîì íà÷àëüíîì ñîñòîÿíèè. Îñîáåííîñòüþ ýòîãî íà÷àëüíîãî ñîñòîÿ-
íèÿ ÿâëÿåòñÿ åãî ëîêàëüíàÿ íåîäíîðîäíîñòü. Òî åñòü âíóòðè òåëà èìååòñÿ çàìêíóòàÿ
îáëàñòü Ω, âíå êîòîðîé íà÷àëüíîå ñîñòîÿíèå ÿâëÿåòñÿ ïîñòîÿííûì. Ìàòåìàòè÷åñêîå
ìîäåëèðîâàíèå ïðèâîäèò ê çàäà÷å äëÿ îäíîðîäíîãî ìíîãîìåðíîãî óðàâíåíèÿ äèôôó-
çèè. Ïîñòðîåíû êðàåâûå óñëîâèÿ íà ãðàíèöå îáëàñòè Ω, êîòîðûå ìîæíî õàðàêòåðè-
çîâàòü, êàê ≪ïðîçðà÷íûå≫, êðàåâûå óñëîâèÿ. Îòäåëüíî ðàññìîòðåí ÷àñòíûé ñëó÷àé
� ìîäåëü ïåðåðàñïðåäåëåíèÿ òåïëà â îäíîðîäíîì ëèíåéíîì ñòåðæíå, áîêîâàÿ ïîâåðõ-
íîñòü êîòîðîãî òåïëîèçîëèðîâàíà, ïðè îòñóòñòâèè (âíóòðåííèõ è âíåøíèõ) èñòî÷íèêîâ
òåïëà è ïðè ëîêàëüíî íåîäíîðîäíîì íà÷àëüíîì ñîñòîÿíèè.

Êëþ÷åâûå ñëîâà: óðàâíåíèå äèôôóçèè; îäíîðîäíîå òåëî; íà÷àëüíîå ñîñòîÿíèå; ëî-

êàëüíàÿ íåîäíîðîäíîñòü; ïðîçðà÷íûå êðàåâûå óñëîâèÿ.
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