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P E R F O R M A N C E  B O U N D S A N D  S U B O P T IM A L  PO LICIES 
F O R  M U LTI-C LA SS QUEUE
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In this paper, we consider a general class of a queuing system with multiple job 
types and flexible service facility. We use a stochastic control policy to determine the 
performance loss in multi-class M /M /1 queue. The considered system is originally a Markov 
decision processes (MDP). The author showed how to compute performance bounds for 
the stochastic control policy of MDP with an average cost criteria. In practice, many 
authors used heuristic control policies due to some hardness in computing and running 
mathematically optimal policies. The authors found bounds on performance in order to an 
optimal policy where the goal of this job is to compute the difference of optimality and a 
specific policy. In other words, this study shows that, the optimal bounds of the average 
queue length for any non-idling policies can be found by a factor of service rates.
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Introduction
We are interested to use an average cost per period (ACPP) in a multi-class job 

M /M /1 queue to determine the performance loss associated with using a control policy. 
We consider non-idling policies, which always mean serving jobs as long as there are jobs 
in the queue. The problem considered in this paper is to control a single server queue with 
multiple job class. [1,2] have shown that the optimal policy for this problem is known where 
the implementation of that optimal policy needs the exact information about the service 
rate for each class. However, note that it is a little difficult to analyse the performance of 
some policies, such as FIFO (see [1]).

Indeed it is known (see for example [3,4]) that the c^-rule is the optimal control 
in two main settings: (i) generally distributed service requirements among all non
preemptive disciplines and (ii) exponentially distributed service requirements among all 
preemptive disciplines. In the preemptive case c^-rule is only optimal if the service times 
are exponentially distributed. The queuing system that we considered to work on, is in 
the discrete-time case where the other case and its optimal control policy is studied before 
and is ф  rule. In the discrete-time case, optimality of c^ rule was established in [4,5]. 
We recall that c^-rule is the discipline that gives a strict priority in descending order of 
ck^k, where ck and ^k refer to a cost and the inverse of the mean service requirement, 
respectively, of class k.

The problem that we considered is Markov decision processes with an objective of 
an average cost per period. The main job of this paper is to find a method to determine 
the performance loss associated with using an optimal control. We produce a systematic 
approach to reach that and to evaluate the difference between optimality and the costs 
from a specific policy. We use the presented methods to supply a relation between two 
costs, one by a specific sub-optimal policy and the other one by an optimal policy. We 
believe that our results open an interesting topic for the further research. For instance, 
well-known optimality results in a single-class queue like the optimality of the Shortest 
Service time discipline or the optimality of FCFS can all be derived as corollaries of the
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queue. In order to get insights into the structure of the optimal policy in the multi-class 
case we consider several relevant cases where the service time distributions are exponential.

Finding an optimal control policy for a Markov decision process is one of the 
highlighted topics for infinite (or even very large) state space systems where computing it 
often is intractable [3]. It is not easy to run even the known general form of the optimal 
control policy due to some difficulties since at each time there is a slot in the discrete 
time process. In each time slot, we need high computational work to evaluate the costs 
of control action [6]. As a result, these are the reasons why we use sub-optimal heuristic 
control policies in practice.

In the present work, by using the general discussed methodology we present a factor 
which contains only the service rates for sub-optimality of the queue for any considered 
policy. The obtained bound establishes that there should not be much effects on the 
queue length when the service rates are approximately the same. Our contribution bounds 
on ACPP for the problem of controlling multi-class queues. Many authors have already 
worked to find bounds in Markov chain problems and also in finding the optimal control 
and analysis of multi-class queues.

Due to the average cost of Markov decision processes for finite state Markov chains, 
as it is done in [7], bounds are used to provide convergence of an iteration algorithm. On 
the other hand for general state spaces that we considered here, the obtained bounds are 
associated with Lyapunov theorems for Markov chains where one can find a similar upper 
bound in [5]. For systems with positive unbounded costs, the standard Lyapunov theorems 
are used to produce upper bounds. The bounds can be considered universalization of the 
Lyapunov bounds and also the finite state bounds. These bounds have a feature that with 
unbounded costs one can provide an upper bound and lower bound.

1. Problem Definition
The model that we want to consider is a multi-classes queuing system where each job 

belongs to a variety distinct classes. On the assumption that the system deals with one 
class of the job, then the order of serving jobs is not important and also does not impress 
the quantities such as average queue length, the results from any simple control policies 
(such as first come-first service (FCFS)) and more complex control policies are the same. 
While jobs depend on service time then the order of serving impress on quantities such 
average queue length. There are many policies which minimizes an average queue length 
for finite multi-class M /M /1 queuing system where one can find in [3]. There are some 
differences between multi-classes queue rather than single class queue which, for instance, 
are (1) the frequently of the job arrival of some classes is more than some other classes,
(2) the service time of some classes is longer than other classes.

Due to the optimal policy for the considered model, we give priority to classes according 
to an average service time which means job classes with shorter average service times have 
a higher priority than job classes with longer average service times. Also, we consider 
preempting in the service where it means we temporarily stop serving a low priority job 
when a job of higher priority arrives. This means we consider the difference between classes, 
need statistically information of serving all classes, and allow to preempt jobs in the service 
if it is needed. Due to sub-optimal control policy, let consider the set of policies that server 
serves all jobs in the queue without idling and taking rest. We call these theme non-idling
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policies. We denote that there is a factor which contains only the service rates when it 
bounds the queue lengths. The obtained bound, for almost the same service rates for all 
classes, produces quantifying the inherent sense where the control policy affects just a 
little bit on the queue length.

1.1. N otation

Let consider discrete-time Markov decision processes where for such a system we 
consider Y be a measurable general state space with respect to some given a-field 
B(Y), a finite set of available actions A  at each time slot, and measurable cost function 
z : Y x A ^  R. At state y e  Y , action a e  A  is the cause of specified cost.

Let consider stochastic kernel p to evolute the state. The kernel is p : Y x Y x A ^  [0,1] 
and its definition is presented by

P(B ,y ,a) Pr Y+i e B Yt =  y , At a , Vy e Y , a e  A, B e  B(B).

In addition, p (B ,.,.)  : Y x U ^  [0,1] is a measurable function for each B e B(B). 
In the supposed system, we considered the performance of systems subject to the static 
state-feedback policies. We consider p : Y ^  A  to be a measurable function that depends 
on the running system state, it chooses the action in each time slot. Let define a set of all 
measurable policies p by set Q =  {p : Y ^  A|p is measurable}.

The state evolution is a random process which is based on policy p e Q, is 
time-homogeneous Markov chain (Y0,Y1,...). Stochastic kernel p (B ,y ,p (y)) specifies the 
transition probability for the Markov chain.

To convenience and to ease of use of notation we define E C  =t-i
\ T , E

k=0
c Yk,p(Yk) Yo0 = y and Ее  =  т E

use oft-i l 
t k=0

c(Yk) Y0 y and use Eg to

show the expectation of g (Yt+1) on condition Yt =  y . Now we consider the following 
performance function for a system under specific policy p e Q in terms of ACPP

J (p) lim sup EC,

where we can define
Jopt =  inf {lim  inf EC\ .

P̂ Q L t— J
Finding and developing tools to determine policies which achieve ACPP J (p) close to Japt, 
is our goal.

2 . Bounds of Markov Chain without Control
Y. Wang and S. Boyd in [8] showed how to compute performance bounds for finite- 

horizon stochastic control problems with linear system dynamics and arbitrary constraints, 
objective, noise distribution, and with asymmetric costs and constraint sets. Here we 
present a methodology to find an approach to determine bounds on ACPP. In this order 
and before presenting a lower bound on ACPP, first we try to find the bounds for Markov 
chain without control (or with a given state-feedback control) and then we develop this 
approach to present a lower bound on ACPP for any policy and then we investigate the
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difference between the optimality and the given policy with using an upper bound and a 
lower bound on the cost by a given policy and by any policy, represently. Here we consider

Theorem  1. Suppose g : У ^  R is a measurable function. We suppose C(y) =  c(y) +  
Eg — g(y) and define

au =  sup s C (y) L a ;  =  i f  C (y)
v&y { J y&  l

If there exists an £ >  0 such that

sup
y&

E \g(Yt+i)\l+£ Yt =  y \g(y)\l+£ <  ж ,

then for all y E У ,
au > lim sup Ec, au < lim inf Ec.

t——<̂  t—TO
This theorem is the main result of this paper and we use it to determine upper and 

lower bounds on the average cost incurred by Markov chains with general measurable state 
spaces. But before we prove Theorem 1, we express the existence of all expectations that 
we need.

Lem m a 1. Suppose g : У ^  R is a measurable function, consider

suP C (y) < Ж  inf  C (y) > —ж ,yey уЕУ

and there exists an £ > 0 such that

sup E
yey \g (Yt+i) \1+£ Yt =  y — \g(y ) \1+M> < ж

then for all y E У

E \g(Yt+i) \1+£

E c(Yk)

Yo =  y

Yo =  y

< ,

< .

(1)

(2)

(3)

Proof. Suppose that there is M  such that (1) equals to M , so the immediate result is

E \g(Yt+i) \1+£ Yt =  y < M  +  \g(y)\1+£, Vy E У .

With clarity E[\g(Y0)\1+e\Yo =  y] < ж . Also, using induction, if for some t, 
E [\g(Yt)\1+£\Yo =  y] < ж , then

E

and as a result,

\g(Yt+1) \1+£ Yo =  y < M  +  E \g(Yt)\1+£ Yo =  y < .

E \g(Yt)\1+£ Yo =  y < .
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Also from the fact that g(y) < 1 +  |g(y)|1+£,

E g (Yt) Yo =  y < 1 +  E |g (Yt)|1+£ Yo =  y < to, Vy G Y .

And also, since —g(y) > 1 +  |g(y)|1+£,

< 1 E |g (Yt)|1+в Yo =  y E g(Yt) Yo =  y , Vy G Y •

Now if

then

sup <J C(y) f < au <  to,
У&У

c(y ) < au +  g (y ) — E g (Yt+1) Yt =  y , Vy G Y,

where |E[g(Ym )|Yt =  y]| =  |E[g(Y1)|Yo =  y]| < to. Accordingly,

E c(Yt) Yo =  y < to, Vt and Vy G Y •

In the similar way, if

1 C (y) f > a  > —то,

then

Accordingly

c(y ) > a  +  g (y) — E g (Yt+1) Yt =  y Vy g Y •

(4)

< E c(Yt) Yo =  y , Vt and Vy G Y •

Now it is clear that (3) is the result of combining of (4), (5). 

Now we can prove theorem 1.

Proof. [Proof of Theorem 1] By the definition of au we have

(5)

□

Oiu > ^E
t-1
E  C (Yk)

_k=o 

which means

1
t

Yo =  y
1 t-1

E
k=o

c(Yk) Yo =  y +\ [E g(Yt) Yo =  y —g(y)

t-1

E  e
k=o

In the similar way,
t-  1

c(yk) Yo =  y < au +  -  g(y) -  E[g(Yt) | T0 =  g] •

E
k=o

c(Yk) Yo =  y > «г +  ^ ( g{y) -  E[g(Yt) | T0 =  y]
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Now if we show that lim^oo \E g (Yt)
the proof.

Suppose that the supreme of E 

M  where M  <  oo. So

Yo =  y

|g(Y+i)l 1+£

0, for all y e Y , then we have completed

Yt =  У |g(y)|1+£ for all y e Y is equal

M - E
t

t-i
E ( e [|g(Yk+i)| 1+£
,k=o

|g(Yt)|1+£ Yo =  y

l Yk] -  |g(Yk)|1+'

-  |g(y)|1+' )

Yo =  y

with some algebra we have that.
Also we know that

(Ig(y)\1+£ +  t M ) ^  < \g(y)\ +  ( tM )iTS, 

therefore (6) and (7) imply that

E |g (Yt)| Yo y < |g(y)| +  (tM )
l

(6)

(7)

(8)

By taking limsup as t approaches to, from both sides of (8) we have

lim sup —E
t—X t |g (Yt)| Yo =  y < lim j(\g(y)\ +  (iM)i+=t—X t V

and so
lim —Et——<̂o t g(Yt) Yo =  y 0, Vy e Y .

□

0

3. Bounds with Control
We used Theorem 1 to provide bounds on ACPP that acquired by Markov chains. 

These bounds are established in the general measurable state spaces of the Markov chains. 
In this section we extend the result to establish a lower bound on ACPP acquired by any 
policy to bound the difference between J(p) and Jopt for some specific p.

Lem m a 2. Suppose h : Y ^  R is a measurable function, consider al be the infimum of the 
{c(Y, a) +  E[g(Yt+1)|Yt =  y ,A t =  a] — g(y)}  for all y e Y and a e A. And for any static 
state-feedback control policy p : Y ^  A  such that

suP { E[|g (Yt+1)|1+£|Yt =  y ,A t =  p(y )] — |g(y)|1+£} < TOyeY

has ACPP where satisfies

al < lim inft—X
1
t

t-1
Y . E  [c(Yk ,p(Yk ))|Yo =  y],
k=o

Vy e Y.
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Proof. For any state feedback policy p E P

a  =  inf {c{y,a) +  E[g{Yt+l)\Yt =  y ,A t =  a] — g(y ) }  <
y£Y ,a£A

<  inf { c (y,p(y)) +  E[g(Yt+i)|Yt =  y ,A t =  p(y)] -  g(y) } .yeY

Now by applying Theorem 1 the proof is done.
□

4. Control Policy of Multi-Class Queue
The considered queuing system is a discrete time model. Let us consider in the each 

time slot t, we have W/ E {0 ,1 } arrival jobs in class i to the queue. Also let’s put restriction 
to have at most one arrival in each time slot (we can consider a small time interval to have 
it), which means ^  W  < 1. Let consider Wt =  (Wt1,...,W tN) denotes the arrival vector.

i
Also consider that any vectors Wt and Wt are i.i.d for any individual time slots, t' =  t. 
We consider Ai =  E[Wti], where it is independent from t. Let Y i denote the number of 
jobs in class i at given time t, and consider Yt =  (Yt1, ...,YtN) as a state vector. Also we 
characterize control sequence Ui in each time slot t such that

Ait
1, if a job of class i is being serviced, 
0, otherwise.

A service, of a job of class i that is being served in a given time slot, will be completed 
with probability 0i where this 0i is independent from the service history. Also, let’s define 
the number of departure jobs of class i in time slot t (those are served successfully) as 
random variable Dt =  At I  (Yti)B i. In this random variable, parameter B i briefs a Bernoulli 
random variable where E[Bi] =  0i and I  is the indicator function,

0, if y =  0,
1, otherwise.

We have the form of the queue length dynamic according to Y +  =  Yti +  W / — Dt for each 
i E {1 , . . . ,N }.

This problem is a Markov decision process with ACPP criteria since we aimed to 
choose how to serve different job classes to minimize an average queue length. The state 
space, for the considered model, is Y =  Z+N, where the actions are chosen from the

A  =  j a E { 0 ,1}N\ ^  ai =  1 j .

In each time slot t, the cost gives the number of jobs of all classes where it represents
N

by c(Yt) =  Yl Yti. Let p : Y ^  A  be a policy, and consider sequence of (У0, Y1, ...) for the
i=1

queue length process supporting by this policy. Then the average queue length supporting 
by policy p is

1 t- 1
J(p) =  limsup -  '^2l E[c{Yk)\Y0 =  0].

t̂ ~  t k=о
The control policy affects on the average queue length where it is the problem that we 

want to consider. Stability is a measure that under, the bounded queue lengths exists for
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any non-idling policy. We call a policy is non-idling if y =  0, then we have yi >  0 when 
p(y) =  ai. Lemma 3 is for the cases that the system is not stabilized under a non-idling 
policy and since the result is standard (see, [16]), we omitted the proof.

N
Lem m a 3. On condition that JO j .  > 1, we do not have any non-idling policy with bounded

i= 1 г
average queue length.

Theorem  2. Consider that QNi be the set of all policies that are non-idling one and let 
p G QNi be an arbitrary one, and also let

Jopt =  inf |liminf EC\ .
P̂ Qni v t—— <̂  J

N
If JO if < 1; then J(p) < oo and we have

i= 1 г

J(p)
Jopt “  min{6>j} 'i

Proof. In order to have a lower bound for Jopt, we define

N

,i= 1
9i(v) =  Ki [ ( J] | ) J]

N
yi

i=1

where the coefficients K 1 and K 2 are

min{0i}
K 1 =  -

N

N
2 1 - E li=1

K 2 =  1 -  2 E
Ai

i=1

Let A l(y,a) =  E[gl(Yt+1)\Yt =  y ,A t =  a] — gi(y). For all y =  0, action a which minimizes 
z(y) +  Ai(y,a) has

N
E

Di
Y , C Y> =  y - A> =  a
i= 1

1.

Therefore,

m n {z ( y ) + A i(y ,a)} =  Y l  1 1
n /  min {9j} '

i=1 9i
yi +  a min{0j }.

In order to have an upper bound on Jp, we use following function,

N
gu

. i=1

N

i=1

2

вi

вi

2

i i
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where constant K 3 is

K 3
max{0i}i

7 N

2 \ i=i
Let consider A u(y) =  E[gu(Yt+1)\Yt =  y] — gu(y). With using the dynamic of queue length
yi =  Y it+i =  YtYti+1 =  Y i +  Wt — D£ we have

N
z(y) +  A  (y) =  Y I 1

i=1

max{6j } ' 
j

в ~
yi +  a max{6j },

where

a

N
zi=1E( 1  + ^ Й - 2

N

i=1
N

2 1 -  E гi= 1
To finish our job in this proof, we need to show that for any policy p G QNi which is 
non-idling we have,

sup{E [gu(Yt+ 1 )2\Yt =  y,At =  p(y )] — g,a(y )2} < ro, 
v&y

and
suP{E [gi(Yt+1)2|Yt =  y ,A t =  p(y )] — gi(y)2} < ro -
vsy

Functions gu and gi have the following form

g(x) =  K  (x2 +  K 2 x),

N
where in the above equation, variable x =  E  I1- Now by squaring g we have

i=1

g(x)2 =  K 2 (x4 +  2k2x 3 +  fc x̂2).

The expected drift for any non-idling policy, E[g(Yt+1)2\Yt =  y ,A t =  p(y)] — g(y)2 is a 
polynomial of degree third where its third order term is equal to

N Ai N

«'2 ( E v - d ( E
G=1 . i=1

It is obviously negative for all y =  0 when the system is stable, where it means, the 
expected drift in g2 has upper bound for all policies in Qn i . Hence, bounds au and ai are 
well-founded and satisfy

J(P) ,  Q, m?x№}
Japt ~ ai min{6li} 'i

□
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The point of this job is that we did not consider simply the maximum and minimum 
service rates of queues to find the lower and upper bound of the average queue length 
of the multi-class queue, respectively. Although these type approaches, that consider the 
minimum and maximum service rates of queues give the bounds but they can be made 
a large difference between these bounds for the given service rates. In fact, the bounds 
by provided in Theorem 2 is tighter than the bound obtaining from considering minimum 
and maximum service rate.

Conclusion
In this paper, we considered a queuing problem which is Markov decision process in 

the general state space and we described the method for computing bounds on the costs 
in such processes with average cost per period. Our method naturally yields the factor 
that can be used at the problem of controlling of a multi-class queue to find a bound on. 
The bound that we found is a relation between the average queue length acquired by any 
policies and acquired by an optimal policy where this bound is totally different with the 
bound that is obtained by applying minimum and maximum service rate in queues which 
serve multi-class jobs.

References
1. Atar R., Mandelbaum A., Reiman M.I. Schesuling a Multi-Class Queue with Many 

Exponentioal Servers: Asymptotic Optimality in Heavy Traffic. The Annals of Applied 
Probability, 2004, vol. 14, no. 3, pp. 1084-1134. DOI: 10.1214/105051604000000233

2. Regan K., Boutilier C. Robust Policy Computation in Reward-Uncertain MDPs Using 
Nondominated Policies. Twenty-Fourth AAAI Conference on Artificial Intelligence, Atlanta, 
July, 2010, pp. 1127-1133.

3. Kebarighotbi A., Cassandras C.G. Optimal Scheduling of Parallel Queues with Stochastic 
Flow Models: The c^-rule Revisited. IFAC Proceedings Volumes, 2011, no. 44, pp. 8223-8228.

4. Shanthikumar J., Yao D. Multiclass Queueing Systems: Polymatroidal Structure and
Optimal Scheduling Control. Operations Research, 1992, vol. 40, no. 2, pp. 293-299. 
DOI: 10.1287/opre.40.3.S293

5. Meyn S., Tweedie R. Markov Chains and Stochastic Stability. London, Springer, 1993. 
DOI: 10.1007/978-1-4471-3267-7

6. Puterman M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming. New 
Jersey, John Wiley and Sons, 2009.

7. Schweitzer P.J., Seidmann A. Generalized Polynomial Approximations in Markovian Decision 
Processes. Journal of Mathematical Analysis and Applications, 1985, vol. 110, pp. 568-582. 
DOI: 10.1016/0022-247X(85)90317-8

8. Yang Wang, Boyd S. Performance Bounds and Sub-Optimal Policies for Linear Stochastic 
Control via LMIs. International Journal of Robust and Nonlinear Control, 2011, no. 21, 
pp. 1710-1728. DOI: 10.1002/rnc.1665

9. Osipova N., Ayesta U., Avrachenkov K. Optimal Policy for Multi-Class Scheduling in a Single 
Server Queue. 21st International Teletraffic Congress, 2009, p. 10951139.

10. Jia Li, Zhang H.M. Bounding Queuing System Performance with Variational Theory. 
Transportation Research Procedia, 2015, no. 7, pp. 519-535.

11. Senderovich A., Weidlich M., Gal A., Mandelbaum A. Queue Mining for Delay Prediction 
in Multi-Class Service Processes. Information Systems, 2015, no. 53, pp. 278-295. 
DOI: 10.1016/j .is.2015.03.010

Вестник ^ЮУрГУ. Серия ^Математическое моделирование
и программирование» (Вестник Ю УрГУ ММП). 2019. Т. 12, № 1. С. 44—54 53



A. Madankan

12. Huang Qing, Chakravarthy S.R. Analytical and Simulation Modeling of a Multi-Server Queue 
with Markovian Arrivals and Priority Services. Simulation Modelling Practice and Theory, 
2012, no. 28, pp. 12-26. DOI: 10.1016/j.simpat.2012.05.010

13. Casale G., Sansottera A., Cremonesi P. Compact Markov-Modulated Models for Multiclass 
Trace Fitting. European Journal of Operational Research, 2016, vol. 255, no. 3, pp. 822-833. 
DOI: 10.1016/j.ejor.2016.06.005

14. Lefeber E., Lammer S., Rooda J.E. Optimal Control of a Deterministic Multiclass Queuing 
System For Which Several Queues Can Be Served Simultaneously. Systems and Control 
Letters, 2011, vol. 60, no. 7, pp. 524-529. DOI: 10.1016/j.sysconle.2011.04.010

15. Walraevens J., Bruneel H., Fiems D., Wittevrongel S. Delay Analysis of Multiclass Queues 
with Correlated Train Arrivals and a Hybrid Priority/Fifo Scheduling Discipline. Applied 
Mathematical Modelling, 2017, no. 45, pp. 823-839. DOI: 10.1016/j.apm.2017.01.044

16. Kleinrock L. Queueing Systems. Volume II: Computer Applications. New Jersey, John Wiley 
and Sons, 1976.

17. Ching-Tarng Hsieh, Lam S.S. Two Classes of Performance Bounds for Closed Queueing 
Networks. Performance Evaluation, 1987, vol. 7, no. 1, pp. 3-30. DOI: 10.1016/0166- 
5316(87)90054-X

18. Koukopoulos D., Mavronicolas M., Spirakis P. Performance and Stability Bounds for Dynamic 
Networks. Journal of Parallel and Distributed Computing, 2007, vol. 67, no. 4, pp. 386-399. 
DOI: 10.1016/j.jpdc.2006.11.005

Received June 28, 2018

У Д К  519.872 D O I: 10.14529/m m p190104

ГРА Н И Ц Ы  П Р О И З В О Д И Т Е Л Ь Н О С Т И  И С У Б О П Т И М А Л Ь Н Ы Е  
С Т Р А Т Е ГИ И  Д Л Я  М Н О Г О К Л А С С О В О Й  О Ч Е Р Е Д И

A .  M a d a n k a n ,  Университет Заболы, г. Забола, Иран, Amadankan@uoz.ac.ir

В этой статье рассматривается общий класс системы массового обслуживания с 
несколькими типами заданий и гибкими возможностями обслуживания. Использует
ся стохастическая стратегия управления для определения потери производительности 
в многоклассовой очереди M /M /1. Рассматриваемая система изначально представля
ет собой марковский процесс принятия решений. В работе показано, как рассчитать 
границы производительности для стратегии стохастического управления марковско
го процесса принятия решения с критериями средней стоимости. На практике мно
гие исследователи использовали эвристические стратегии управления из-за некоторой 
сложности в вычислениях и использовании математически оптимальных стратегий. 
Цель данной работы заключается в расчете разницы между оптимальной и конкрет
ной стратегий, а также в нахождении границы производительности для оптимальной 
стратегии. Другими словами, это исследование показывает, что оптимальные границы 
средней длины очереди для любых стратегий без простоя можно найти с помощью 
коэффициента скорости обслуживания.

Ключевые слова: система массового обслуживания; многоклассовые задачи; 
стратегия стохастического контроля.
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