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ON A NONLINEAR PROBLEM OF THE BREAKING WATER WAVES
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The paper is devoted to the initial boundary value problem for the Korteweg-de Vries—
Benjamin-Bona—Mahony equation in a finite domain. This particular problem arises from
the phenomenon of long wave with small amplitude in fluid. For certain initial-boundary
problems for the Korteweg-de Vries-Benjamin—Bona—Mahony equation, we obtain the
conditions of blowing-up of global and travelling wave solutions in finite time. The proof of
the results is based on the nonlinear capacity method. In closing, we provide the exact and
numerical examples.
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Introduction

Breaking Waves

In fluid dynamics, a breaking wave (see Fig. 1) is a wave whose amplitude reaches a
critical level at which some process can suddenly start to occur that causes large amounts
of wave energy to be transformed into turbulent kinetic energy. At this point, simple
physical models that describe wave dynamics often become invalid, particularly those that
agsume linear behaviour.
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Fig. 1. Breaking waves

Breaking of water surface waves may occur anywhere that the amplitude is sufficient,
including in mid-ocean. However, it is particularly common on beaches because wave
heights are amplified in the region of shallower water (because the group velocity is lower
there). There are four basic types of breaking water waves [1|. They are spilling, plunging,
collapsing, and surging (see Fig. 2).
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Fig. 2. Types of breaking water waves
History of Problem

The Korteweg-de Vries equation and the Benjamin—Bona—Mahony equation are two
typical examples associated with the effects of dissipation, dispersion, nonlinearity and
also provide a description of the propagation of waves with small amplitude in water or
solution in other liquid medium. The Korteweg-de Vries equation is described as follows:

The Benjamin—Bona—Mahony equation is an alternative to the Korteweg-de Vries equation
|2] which is described as follows:

Ut — Uty + Uy + U, = 0.
Francius, Pelinovsky and Slunyaev introduced the wave dynamics of the following
equation (3]
Ut — Utz T Qlgyy + ﬁuz + uty = O; (1>

where «, 5 € R. The equation (1) is so-called Korteweg-de Vries—Benjamin—-Bona—Mahony
equation.

Statement of the Problem

In this paper, we consider one of the mathematical problem of the breaking water
waves, the Korteweg-de Vries—Benjamin—Bona—Mahony equation with initial conditions
described as follows:

Ut — Utgr + QUgaz + Py + uu, = 0,6 >0, 2 € (0,L), (2)
U(l’,O) - U0($), VIS [O7L]7 (3>

where «, § € R and wug is given function.
The Korteweg-de Vries—Benjamin-Bona-Mahony equation has important application
in different physical situations such as waves on shallow water, and processes in
semiconductors with differential conductivity. In [5] Korpusov and Yushkov obtained

sufficient conditions for the finite time blow-up of solutions of time and space initial
problems for Korteweg-de Vries-Benjamin-Bona-Mahony type equation in the form

Ut — Utpr — Uppe T Ully = 0.

They used the powerful method of nonlinear capacity, developed by S.I. Pohozhaev [10].
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We also note that the blowing-up of solutions of the initial problems for the Korteweg-
de Vries and critical Korteweg-de Vries equations are investigated in [6-9,13-15]. Recently
Li and Liu [4] studied the global and local (with respect to ¢t > 0) solvability of the problem
(2), (3) with boundary conditions

u(0,t) = ha(t),
u(L,t) = ha(t),
ur(L,t) = hs(t), t > 0.

This paper is devoted to singular solutions of the problem (2), (3), more precisely, to
solutions that blow up in a finite time. The approach to the problem is based on the method
of nonlinear capacity [10,11], more precisely, on the choice of test functions corresponding
to initial and boundary conditions under consideration.

Here, we give a simplest case of the analysis of a “rough” blow-up, i.e., the case where
the solution tends to infinity as ¢ > T" on [0, L] of values x, more exactly, when the integral

L

/u(t,x)go(x)dx

0

tends to infinity as ¢ > T for the given test function ¢.

1. Main Result

We consider a test function ¢ € C?([0, L]) and monotonically nondecreasing:

¢'(x) >0 for x €0, 1], (4)
and let the function y satisfy the following properties:

(

dr < oo;

L

(91 _ / (OZQOIII ‘tﬁgpl)2
0, )
L

A2
92:/7(90 fp)dx<oo.
\ ¥

Suppose the classical solution u(x,t) € C’,};’ ((0,L) x (0,7)).
Multiply the Korteweg-de Vries—Benjamin—-Bona—Mahony equation (2) by a test
function ¢ we have

L L

%/(u(x,t) — U (1, 1)) () d = — a/umm(x,t)go(x)dx—

0

—5/um($,t)90(x)dx—/ux(x,t)u(x,t)go(x)dx.

Integrating by parts the last equation we obtain
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u(z, t)(p(x) — oz/Lu x, )" ( dx+ﬁ/ (x, )¢ (x)dx+

SN
O\h

+

| —

/ 2,0 (@)dx 1 Blu(z, 1), o(x))

where
Blu(x, t), p()) = ue (2, ) p(x) — we(, )¢ () — atugs (2, )p() + au, (2, )¢ (2)—
— au(x, )" (x) — Bu(x, t)p(x) — l162(% ().

2
Then, using properties (4), we find
[ utat) (e @) 1 @) 1ol @) do
0 (0@ BN [ (@) @)
/<(”+ ) v [

We denote by w(x,t) the following function

ap" (x) + B’ (x) .

w(x, t) = ulx, t) + ()

Let L

ﬂw/w%mw@—WMMm

0
By using the Holder inequality for F(t), we obtain the following estimate
L 2 L L

[t - anir ) < [wendwa [

0 0 0

(o) — (@)
P

X.

Therefore, using the properties of the test function (5) for the expression (6), we obtain
the following first order differential inequality

o) > ) g - 2 (7)
with initial condition
F(O) - / <Uo($) + OZSO/II(ZZI(‘;)BQO’(I’)> ¢($)d$’

where ®(t) = B(u(L,t), (L)) — B(u(0,t), »(0)). Then the following results are true

Theorem 1. Let ug(x) € LY([0,L]) and the solution u € C’t{f((O,L) x (0,T)) of the
equation (2) be such that there exists a function ¢ satisfying conditions (4), (5) such that

O(t) > o, forall t>0,

40 Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming
& Computer Software (Bulletin SUSU MMCS), 2019, vol. 12, no. 2, pp. 37-46



MATEMATUYECKOE MOAEJTMPOBAHUNE

where o 18 a some constant. Then
(A) if 0 > 0y, then F(t) — 400 fort — T}, where

T* — M Z —arctan& .
! \/0'_92 2 2\/(91(0'—92) ’
(B) if 0 = 60 and F(0) > 0, then F(t) — 400 fort — Ty, where T3 = ;f?é);
(C) if 0 < Oy and F(0) > 2+/0,(0; — o), then F(t) — +oo fort — T, where

Vo 1nF(O)+2 01(0; — o)
7\/(92f0' F(O)—2 (91((92—0').

Applying the theory of ordinary differential inequalities, Theorem 1 can be proved.

T3

1.1. Examples

Example 1. Note that the trial function method has great practical convenience. For
example, if in problem (2), (3) on the interval [0, 1| are given boundary conditions

u(0,t) =0, u(l,t) =0,
Uper (1, 1) — we (1, 1) — B (1,8) =0, t > 0.

Then, if ¢(z) = 2° we obtain 6, := 741, 05 := 22 and ®(¢) = 0, for all ¢ > 0. Hence it
follows from Theorem 1 that, under condition
1

. 2,/1330095
uo(x)x’dx > — =

0
the solution of problem (2), (3) blows up in finite time.

Example 2. Let @ = 0 in problem (2), (3) on the interval [0, 1] and let the solution of
problem (2), (3) satisfy the boundary conditions

u(0,t) = 0, u,(1,¢) = 0,
u?(1,t) +2Bu(l,t) =0, t > 0.

Then, if ¢(x) = x we obtain 6 := 2, 0, == 3 and ®(t) = 0, for all ¢ > 0. Hence it
follows from Theorem 1 that, under condition

/uo(x)xdx > @

0

the solution of problem (2), (3) blows up in finite time.

Example 3. Let in problem (2), (3) on the interval [0, L] are given boundary conditions
u(0,2) = 0, ux(0,1) = 0,
Uz (0, 1) + w2 (0,8) + ue(L, ) = 0, t > 0.
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Then, taking a function p(xr) = (r — L) we obtain ¢, := L, 0y = %3 and ®(t) =

0, for all ¢ > 0. Hence it follows from Theorem 1 that, under condition
L
24/3L2
/uo(x)(x — L)dx > \/;
0
the solution of problem (2), (3) blows up in finite time.

Example 4. Let § = 0 in the problem (2), (3) with
up(x) = Az, A#0

on the interval [0, 1]. The solution of this problem is the function

X

u(x,t) = T 7

where T* = 1/ A.
Thus, for A > 0 the solution of this problem becomes +oo as t — T*. On the other
hand, for A < 0 there exists a global (for all £ > 0) smooth solution of problem (2), (3).
We built the graph of the solution for A = 1/66. As can be seen from Fig. 3, the
solution of the problem (2), (3) with A = 1/66 has a discontinuity at ¢ = 66.
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Fig. 3. Graphs of u(x,t) for A= 1/66

2. Singular Travelling Wave Solutions

We consider the traveling wave type solutions of the Korteweg-de Vries—Benjamin—
Bona—Mahony equation (1) with a = —1, § = 1:
u(z, t) = u(g),

where ¢ = x — ct and c is the wave velocity. Then u(&) satisfies
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(c— D" — (¢c— D/ —u/ = 0. (8)
Equation (8) admits the following integrals:
2
(c—l)u"—(c—l)u—%—C’o:O. (9)

Here (j is an arbitrary constant. A solution of (9) is a function v € L2 (I), I C R that
satisfies the integral identity

[ o —2c=1) [utg - e~ 260 [oac, o i, (10)
T T T
2.1. Nonexistence of Travelling Wave Solutions

The following results are true

Theorem 2. The equation (8) with support L > 2, satisfying the inequality

c—1)%
oo e »

does not admit a solution.

Proof. We multiply equation (9) by a nonnegative test function ¢ € CZ(R) with compact
support. Then after integration we obtain (10). Hence, by the Young inequality with
parameter a > 0, we find that

/u2¢d§ < %/u%dg + ale — 1)/(¢”¢¢) ¢ — 200/¢d§ (12)

I I I

We now take the test function:

o

where I > 2 is a free parameter and the function 0 < ¢ € C*(I) such that

)

1, ifp <1,
gZS0(”){0, it || > 2.

L
Then, if a = ¢ — 1 the inequality (12) implies
) 2
(=15 2 26ud, d— [ uloyin. (14)
2

From this it directly follows that if there exist (j such that the inequality
(12) holds, then there is mno such bounded traveling wave solution of
equation (10). O
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Fig. 4. Graphs of u(§)

2.2. Numerical Examples

In this subsection we consider some numerical examples for equation (9) with different
viscosities. Suppose that we know some initial data for a traveling wave. Then it can be
seen from Fig. 4, that the time for the blows-up of traveling waves increases if the wave

velocity is decreasing.

Conclusion

The present paper is devoted to the initial problem for the Korteweg-de Vries—
Benjamin-Bona-Mahony equation in a finite interval. This particular problem arises
from the phenomenon of long breaking waves with small amplitude in fluid. For certain
initial-boundary problems for the Korteweg-de Vries-Benjamin—Bona—-Mahony equation,
we obtain conditions of blowing-up of local solutions in finite time. Proofs of the results
are based on the nonlinear capacity method. We also proved the existence of the singular
travelling wave solutions. Moreover, we provide some examples.
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