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We consider a problem on the image processing and computer vision. A wide range of
methods allows to solve problems of this type. The methods of partial differential equations
are the most useful and interesting ones. A non-linear diffusion takes special place in
these studies. In this context, fundamental theoretical foundation is a central part of this
approach. Therefore, we introduce a new functional class of spaces, formulate and prove the
lemma on the equivalent norms in anisotropic Stepanov spaces. Another important result
of this study is the lemma that the anisotropic Stepanov spaces are Banach. In addition, we
obtain the theorem on the solvability of the equation of anisotropic diffusion in anisotropic
Stepanov spaces. The results can be applied to the image processing and computer vision.
Also, the obtained results open the new view to this problem.
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Introduction

As is known, partial differential equations (PDEs) have led to an entire new field
in image processing and computer vision [1, 2]. The PDE-based methods play a central
role in hundreds of papers published during the last decade, and are discussed in several
conferences and workshops. The success of this method is not really surprising, since PDEs
have proved their usefulness in several areas such as physics and engineering sciences
during a very long time. A non-linear diffusion takes a special place in these studies. Note
a method of this type proposed by Perona and Malik in 1987 [3]. In order to smooth an
image and, simultaneously, to enhance important features such as edges, Perona and Malik
apply a diffusion process, where diffusivity is controlled by derivatives of the formed image.
These filters are difficult to analyse mathematically, because the filters should act locally
like an inverse diffusion process. This gives rige to issues on well-posedness. On the other
hand, non-linear diffusion is widespread method with very effective results. Therefore, this
method needs for a theoretical foundation. We consider a new class of functions, which
opens a new view to this issues. This class is formed by the anisotropic Stepanov spaces.
The proofs of some statements for these classes are based on non-linear analysis of partial
differential equations and functionals.

1. Preliminaries on Mean Derivatives

Let p = (p1,....pn) and I = (Iy,...,1,) be vectors with coordinates 1 < p; < oo,
0 <l; < o0, where ¢ = 1,...,n. Consider the parallelepiped I; = I;; x --- x I;, C R" with
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the edges I}, = {z; : 0 < x; < I;}. Following Nikol’skii [4, p. 9; 5, p. 30|, by Lz(I;) we
denote the space of measurable functions f(x) = f(xy,...,x,) on I; such that the norm

et AL (]

is finite. Note importance of the order in which the norms are taken with respect to
different variables. If p; =p (i = 1,...,n), then | f|zr = [ flp.x-

The spaces Lz(I7) are called the Lzanisotropic Nikol’skii spaces. As is known, these
spaces are Banach with norm (1). Nikol’skii began the study of these spaces in relation to
the theorems on embeddings of spaces of functions having generally different behavior in
different directions. If norm (1) is considered for functions defined on unbounded sets, in
particular, on the entire space R™, then the corresponding anisotropic Nikol’skii spaces lose
many important properties, such as embedding properties with respect to the parameter
P, existence of important classes of bounded functions, etc.

Therefore, there is an interest in extension of classes of such spaces under which these
properties are preserved. From this point of view, the Stepanov spaces Sp(ﬁn) 6, p. 110;
7, p. 40| of locally integrable functions with the norm

P 1
& Pn

3
P2 P2 Pn—1

|f(x)|p1dx1> ) dxs . dx, (1)

n 2 1

1£lls,, = sup { I |f<f+%>pdx} s IT@ Sl @)

teRm teR™

are the spaces closest to the anisotropic Nikol’skii spaces. In order to investigate various
properties of such functions with respect to different variables by Nikol’skii approach, we
introduce the anisotropic Stepanov spaces S;7 as the sets of locally integrable functions
on R™ with the norm
1y, = sup 1T iy (3)
TeRn
Obviously, these sets of functions form normed linear spaces. Moreover, in this article,
we consider the question on the close relationship between such spaces and anisotropic
Nikol’skii spaces, as well as the problem on solvability of anisotropic diffusion in these
spaces.

2. Main Result

As is known [6, p. 99|, various equivalent norms can be defined on the classical Stepanov
spaces Sp(R"). The same is true for the spaces S ;.

Lemma 1. Norms (3), corresponding to different = (l<11>, o ,lle)), are equivalent.

Proof. Suppose that | = (l1,...,ln), lv = maxl; and o= (lo, ..., lo).

1<i<n
Let us show that the norms |f ||5§7 and || f ||5§70 are  equivalent.

On the one hand, we have
1, < I1flls,, - (4)
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On the other hand, suppose that Iy = m;l; + ©;, where 0 < ©; < 1 and m; are positive

integers. Then we have ) n
Py B3 Pn:ll pn
ly ly lo Pl b2
/ / /|f(x+f)|p1dx1 dry p ... dx,, <
0 0 \0
1
P2 b3 P:il P
(mn+1D)ln (ma+1)l2 7 (m1+1)la P1 b2
< / / / |f(x+ )P dxy | dxap ... dr, p =
0 0 0
— (kn+1)ln o (k2+1)l2
- Zﬁ/ .HE:O/X
k0 7 ka0 0 )
2y THE e (5)
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k0 9
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where kl = 3 kil;.
=1
Apply the inequalities

@) < 8§ < p7ts@ i 4>,
n* 8w < 5r < S if p<a<l

and obtain
172|255, < C(P;17)%

« iﬁ:o{/ol/ol </Oh|f(x+z+H)|mdxl>p

3
=2
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=
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=2}
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kn=0
where m = (my, ..., m,). Take the supremum over ¢ € R™ and obtain the inequality

1flls,,, < C@m) - I flls, (7)

The statement of the lemma follows from (4) and (7). O

Based on the results of Lemma 1, we assume that [ = (1,...,1) and consider the norm

[/l s;7- Let K Dbe the unit cube 0 <z; <1, (i = 1,...,n), and K be the cube K shifted
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by the vector m. Therefore, K (K7 = 0, if m # 7 and |J Km — R™. In the spaces S;7,

we use the cover of R"® by the cubes K in order to define the equivalent norm on the
spaces 951 as follows:

[/ 1ls5,0 = sup [1f [} 25 - (®)

Indeed, on the one hand,
1 Fllspa < 1 £ls, - (9)

In order to prove the reverse inequality, we use (6) and obtain

1T f |y, < C(P, )%

[tn]+2 [t2]+2
X
S

kn=0

Y -

[t1]+1 o 1
/ |f(x + k)P dxy —.dz, : (10)

[t1]

In (10), we represent the corresponding integrals as

/[t i12] /[t 1] /[t i12]
[t:] [t:] [t:]+1

where ¢ = 1,...,n, once more use (6), take the supremum over ¢ € R”, and obtain

1lls,, < CE) - | fllspo- (1)

The statement follows from (9) and (11). Hence, since the spaces Lj x are separable on each
cube K, then the spaces Spo are separable and, therefore, the spaces S;; are separable.

Lemma 2. The spaces S;; are Banach.

Proof. The proof is based on the following fact about vector-valued function defined on
some abstract set and taking values in the Banach space E. This fact was developed by
Hille and Phillips [8, p. 103]. If f(o) is strongly measurable on & and || f(o)| g is bounded
everywhere except for some set having zero measure, then the space L. (0, F) is Banach
with the norm || f|le = ||f(o)||lg- If |f(0)|| g is continuous, then || f|| = sup| f(o)| and

ocd
Lo(o, E) becomes C(o, E). The statement of Lemma 2 follows from this statement, if

E = L;; and & = R", since the spaces Ly are complete.

O
Let K]' C R™ be the cube with the edges 0 < z; <[, and K7, be the cube K}* shifted

by the vector t = (t1,...,t,). Consider the biconvex functional
Bi(f,g) = sup [T+ 1)g(T+O)dx| = sup f(x)g(x)dz (12)

tekn |JKp tery | /Ky,

The functional Bi(f, g) is finite, if f € S5;, ¢ € Syy. The proof of this statement is based
on the Holder inequality for the norms on L,(€2) and L, (Q) [1, p. 19]:

< Nz - Ngllz, - (13)

- J(@)g(x)de
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Hence, take supremum over ¢ € R” and obtain
1Bi(f )l < Ml - Nlgllsy - (14)
It is easy to see that (14) implies also the inequality

1Bl )l < [l - 19l cmy- (15)

Therefore, the following theorem is valid.

Theorem 1. The following equalities are valid:

Ifllsz = sup |Bil(f. 9)l. (16)
loll, =1

lgll; = sup  [Bi(f, g)l- (17)
I£lls ,~1

Proof. Let us prove (16). If 1 < p < oo, the function f(x) is measurable on R and satisfies
1Bi(f: 9)| < Mlgllz, @ (18)

for any function ¢ € L. (R™), where Lo (R") is a set of measurable essentially bounded
and finite functions, then f € 5,7 and

M= |flls,.. (19)

Following the proof of the similar statement proposed by Nikol’skii [1, p. 19], we assume
that s is the number of infinite components of the vector p, 0 < s < n, while the remaining
components are finite.

Suppose that the statement is false and the inequality [|f|[s ; > M holds for some

function f(x). In this case, there exists t, € R™ for which
||f||L§’(K?0 7 > M) (20)

and we can find a positive integer & such that the function

|f(x)], if |f(x)] <k and x€ K;
o(x) = k, if |f(x)]>k and x€ K;
O, if x ¢ KEO,Z

0727

(21)

0727

satisfies the inequality
ol > M.

Next, we use the Nikol’skii functions [1, p. 20|, which are defined as follows. For p; < oo,
we assume that

pi—1
e ees20) = (Wl it WG e )
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(for ¢ = 1 we suppose that |¢llr, = = |¢]), then ¢ = 0, if |¢[|r, = 0. For p = oo, we
assume that

wi(:vim) s ,ZCn) — it .
O, if sz - O,
where F; = {($177$n) : ||90||(plw‘,pifl),h><~~~><Ii71 > HSOH(leypi)JlX"'XIi}: my I} is the
measure of the one-dimensional section of the set I} over x; for fixed x;y1,...,%,, and

XF; 1s the characteristic function of the set F.
It is easy to see that g € Leo(R"), [g]|r, = 1 and

[ te@gt@ide = [ lpt@gtalde > Il ) > M

toj

Hence, we take into account (20) and obtain

J(@)g(x)de

Kn

| Bi(f,9)] = sup

teR™

z/‘|m@muwmznm%f>M-
ol

Therefore, we obtain the estimate

Bi(f.9) > Mgllz,, -

which contradicts to (18). This completes the proof.

(I
Therefore, on the one hand,
Iflls; < sup  |Bi(f,9)l- (22)
7 ”g”Lpl(Rn):l
On the other hand,
s Bfg) < Iflls, (23)

”g”Lpl(Rn) =1

The proof of equality (16) follows from inequalities (22) and (23). Equality (17) is proved
in the same way.

Theorem 2. The partial differential equation

ou(t, x)

i div(DVu(t, x)),

u(x,0) = p(z)
is solvable in the spaces S, i(R™), and there exists the estimate
luutt, 25, ey < ol oy
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AHN3OTPOITHAYA TNOPY3NA B AHU3OTPOITHBIX
ITPOCTPAHCTBAX CTEIIAHOBA

B.A. I'opaos, BYHIL BBC «BBA umenu npodeccopa H.E. ZKykosckoro
u FO.A. Tarapuna>, r. Boponesx, Poccuiickasi ®eneparust

B craThe paccMaTpuBaeTcs 3a0at4a, CBI3aHHAS ¢ 00paboTKOi m306parkeHuil 1 KOMITHIO-
TEPHBIM 3peHneM. MHOIue MeTO/bl IOMOIAIOT PEIIUThL TaKoi Tull 3aaa4. Hanbosee moses-
HBIMH U MHTEPECHBEIMH U3 HUX ABJIAOTCA METOIbBI ypaBHeHI/Iﬁ C 9aCTHBIMH ITPDOMU3BOIHBEIMH,
1 0coboe MECTO B ITHX MCCIIEN0BAHUIX 3aHUMaeT HesmHelHas nuddyszusa. OyHnamenTaisb-
Had TEeOPpeTUIECKad OCHOBA B TeKyH.[eM KOHTEKCTE ABJId€eTCA HeHTpaJ[bHOfI YaCTBIO JaHHOTO
mojxosa. Tak, B craThe BBEIEH HOBHIN (DYHKIIMOHAJBHBIN KJIACC MTPOCTPAHCTB, TOJTyYe-
HA ¥ JOKA3aHA, JeMMa, 00 9KBHUBAJEHTHOCTH HOPMUPOBKY B aHU3OTPONHBIX MPOCTPAHCTBAX
CremnaHoBa, TIOJYYeHa JIEMMa O TOM, 9TO PACCMATPHUBAEMBIE MPOCTPAHCTBA SIBISIOTCS Ha-
naxoBeiMu. llosiyuena Teopema O Pa3pEITUMOCTH ypPaBHEHHS aHU30TPomHOW nudpysun B
AHMBOTPOMIHBIX MpocTpancTBax CrenanoBa. Pe3ysapraThl MOTyT GBITH IPUMEHEHBI K 00pa-
6oTKe M300PAKEHNIT 1 KOMIBIOTEPHOMY 3PEHUIO M MOTYT JIaTh HOBBIA B3I HA DEIIEHIE
JaHHBIX 3a/Ja4.

Kmoueswte crosa: dudpysun; npocmparcmea Hukorvcrkozo; anusomponmsie npocmpai-

cmea Cmenanosa; anusomponnas ouddysun; duddepenyuarvroe YypasHeHUa.
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