О ВОЗМОЖНОСТЯХ ПРИМЕНЕНИЯ НЕКОТОРЫХ SCADA-СИСТЕМ В УЧЕБНОМ ПРОЦЕССЕ

Е.А. Зверева

В статье представлены основные направления моделирования содержания дисциплины по выбору, отражающие специфику подготовки бакалавров по направлению «Приборостроение» и учитывающие региональные особенности рынка труда и современные информационные технологии. Проведен анализ российского рынка систем диспетчерского управления и сбора данных (SCADA-систем) в нефтегазовой отрасли. Сделаны выводы.

Ключевые слова: учебный процесс, дисциплина по выбору, приборостроение, SCADA, ACУТП, нефтегазовая отрасль.

В условиях современного периода развития информатизации перед ВУЗами поставлена важная задача — подготовить специалистов, способных активно включиться в качественно новый этап развития современного общества. Это обусловлено: во-первых, потребностью современных производств в конкурентоспособных инженерных кадрах — бакалаврах, способных успешно работать в условиях высокой автоматизации и информатизации производства и, во-вторых, недостаточным уровнем подготовки будущих бакалавров к производственной деятельности в процессе обучения [1]. В рамках учебного процесса это достигается сочетанием теоретической и практической подготовки, включая прохождение практик. При этом содержание вариативной части профессионального образования заслуживает быть предметом специального исследования, обеспечивающим углубленную специальную подготовку с учетом регионального рынка труда и особенностей динамично развивающихся технологий.

Таким образом, автор ставит проблему исследования — определить оптимальное содержание дисциплин по выбору на примере дисциплины «Компьютерные системы сбора, обработки измерительной информации в нефтегазовой отрасли», обеспечивающее актуализацию базового содержания подготовки бакалавров по направлению 200100.62 «Приборостроение» в филиале Южно-Уральского государственного университета в г. Нижневартовске.

Проблема определила цель исследования — теоретическое обоснование, разработка и реализация содержания дисциплины по выбору «Компьютерные системы сбора, обработки измерительной информации в нефтегазовой отрасли».

Объект исследования – дисциплина по выбору.

Предмет исследования – подготовка бакалавров по направлению 200100.62 «Приборостроение».

Для решения поставленной цели необходимо решить следующие задачи:

- 1. Определить основные направления моделирования содержания дисциплины, отражающие специфику подготовки будущих инженеров по направлению «Приборостроение» с учетом региональных особенностей и современных информационных технологий.
 - 2. Разработать содержание дисциплины.
- 3.Создать и апробировать учебно-методическое обеспечение дисциплины.

Подробнее остановимся на решении одной из задач – определение основных направлений моделирования содержания дисциплины по выбору «Компьютерные системы сбора, обработки измерительной информации в нефтегазовой отрасли».

Регионообразующей отраслью ХМАО-Югры является нефтегазодобывающая промышленность. Современное нефтегазовое оборудование характеризуется сложностью и комплексностью технологических процессов, а также пространственной распределенностью отдельных объектов по отношению к центру управления (диспетчерскому пункту). Наиболее перспективной технологией для автоматизации технологических процессов в данной отрасли являются SCADA-системы. Выбор SCADA-систем — зачастую непростая задача, требующая внимания к балансу между требованиями разработчиков, возможностями продукта и его ценой. А в соответствии с концепцией перехода на импортозамещающие технологии Правительства РФ [2] наибольший интерес представляют отечественные SCADA-системы.

Таким образом, для решения поставленной задачи необходимо провести анализ российского рынка систем диспетчерского управления и сбора данных (SCADA) в нефтегазовой отрасли, выбрать SCADA-систему для внедрения в учебный процесс в рамках дисциплины «Компьютерные системы сбора, обработки измерительной информации в нефтегазовой отрасли».

Предлагаемые к рассмотрению SCADA-системы: «TraceMode», «Master SCADA», «Круг-2000».

«**TraceMode**» – продукт от компании AdAstra Research Group, Ltd (рис. 1). SCADA-система TRACE MODE является первой интегрированной

информационной системой для управления промышленным производством, объединяющая в едином целом продукты класса SOFTLOGIC-SCADA/HMI-MES-EAM [3].

Под управлением TRACE MODE в нефтегазовой отрасли успешно работают:

- АСУ ТП кустовых насосных станций КНС Пильтанского месторождения (XMAO);
 - АСУ ТП ДНС 4 НГДУ Сургутнефть (ОАО Сургутнефтегаз);
- АСУ ТП эталона производительности нефтяных скважин корпорации Уралтехнострой (Уфа, Башкортостан);
 - АСУТП производства бензина Евро 5 на Бродском НПЗ (Босния);
- АСУТП подготовки сухого пара на нефтеперерабатывающем заводе «Ляохэ» (Китай);
- АСУТП нефтяного месторождения ОАО «Татнефтепром-Зузеевнефть» (Татарстан);
 - АСУТП головного ГРП ОАО «Волгоградоблгаз» (г. Волгоград);
- АСУТП энергообеспечения компрессорной станции ОАО Газпром «Волховская» (Ленинградская область).

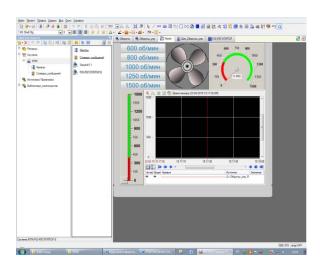


Рис. 1. Интерфейс системы Trace Mode

«Круг-2000» – продукт компании НПФ «Круг» (рис. 2). По информации, представленной на сайте производителя [4], SCADA-система «Круг-2000» является модульной интегрированной системой и рассматривается как средство для построения автоматизированных систем управления объектами предприятий, систем телемеханики, решающей задачи учёта и диспетчеризации в различных отраслях промышленности. Отличительной особенностью системы является высокая надежность, модульность, глубокая интеграция SCADA и среды программирования контроллеров, мощный инструментарий, обеспечивающий удобство создания и отладки проектов пользователя.

Под управлением Круг-2000 в нефтегазовой отрасли успешно работают:

- УУН № 13, г. Омск;
- УУН № 702, г. Адамово, Польша;
- УУН № 201 «Кальчинское месторождение», г. Тюмень;
- УУСК(Н) № 1100 «Сургутский ЗСК», г. Сургут;
- УУН «Кошильское месторождение», г. Нижневартовск;
- СИКН № 578 «Самотлорское месторождение», г. Нижневартовск;
- УУН № 364Е «Белкамнефть», г. Нефтекамск;
- AT-1,2,3 OOO «РН–Туапсинский НПЗ» (ОАО «Роснефть»);
- НГДУ «Азнакаевскиефть», г. Азнакаево (ОАО «Татнефть»).

Рис. 2. Интерфейс системы «Круг2000»[4]

«Master SCADA» – продукт компании НПФ «ИнСАТ» (рис. 3). По словам производителей [5], Master SCADA – это система для АСУТП, MES, задач учета и диспетчеризации объектов в различных отраслях, имеющая единую среду разработки всего проекта; раздельное конфигурирование структуры системы и логической структуры объекта; открытость и следование стандартам; мощную трехмерную графику и мультимедиа; неограниченную гибкость вычислительных возможностей; объектный подход; защиту авторских прав разработчиков проектов.

Среди пользователей Master SCADA в нефтегазовой отрасли такие крупные компании, как:

- ОАО Ульяновскиефть;
- ОАО «Уральские газовые сети», Екатеринбург;
- ОАО «Салаватнефтеоргсинтез» (Салават, республика Башкортостан);
- «Лентрансгаз», «Тюменьтрансгаз» ОАО «Газпром» и др.

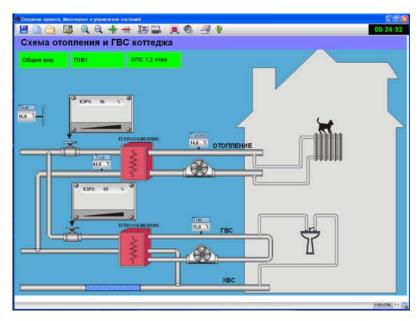


Рис. 3. Интерфейс системы «Master SCADA»[5]

Данные SCADA-системы сравнивались по следующим параметрам (см. таблицу).

- 1) операционная система;
- 2) состав системы;
- 3) формирование отчетов;
- 4) функции управления;
- 5) сигнализирование тревог;
- 6) механизмы обработки данных;
- 7) минимальные системные требования;
- 8) масштабируемость;
- 9) языковая поддержка;
- 10) наличие помощи;
- 11) режим симуляции;
- 12) мнемосхемы;
- 13) тренды;
- 14) наличие веб-сервера;
- 15) работа с БД;
- 16) резервирование данных;
- 17) драйвера;
- 18) языки программирования;
- 19) стоимость.

Таблица Сравнение SCADA-систем

Номер	Название SCADA- системы		
критерия	Trace Mode	MasterSCADA	Круг-2000
	DOS, Windows, Linux	DOS, Windows,	DOS, Windows, QNX,
1.	DOS, Windows, Linux	Linux	Linux
	Система программиро-	Среда разработки,	Среда разработки,
2.	вания контроллеров;	среда исполнения,	Среда исполнения.
	система разработки	модули связи с БД	Run-time модули,
	распределенной	mogyim ebisii e ba	Run-time комплексы,
	АСУТП; среда разра-		Тренды, Алармы
	ботки ТМ6.		(Сигнализации)
3.	Встроенный генератор	Позволяет создавать	Модуль работы с от-
	отчетов, печать и ар-	отчеты любых форм	четами DataRate 2.5.
	хивация отчетов	(xls,csv и т.д.), вклю-	Данные предостав-
		чения любой графи-	ляются в формате
		ческой информации,	Excel, имеются смен-
		имеется мастер поша-	ные ведомости и про-
		гового создания отче-	токол пред- и послеа-
		та. Есть возможность	варийных ситуаций
		как ручного сохране-	
		ния, так и автомати-	
		ческого – с использо-	
	П	ванием расписания	П
4.	Да	Да	Да
5.	Система управления	Да, звуковые и цве-	Реализована возмож-
	тревогами МРВ, при-	товые варианты сиг-	ность формирования
	оритеты тревог	нализации, есть хронология предыду-	сложных выражений для генерации тревог
		щих сигналов трево-	для тенерации тревог
		ги с указанием вре-	
		мени их появления	
6.	ODBC, OPC, DDE	OPC, OLE, DCOM,	OPC DA, OPC HDA
	, ,	ActiveX, OLE DB,	, - -
		ODBC	
7.	Pentium-4, процессор –	Pentium-4, 1-	Pentium-4, процессор
	Intel Core Duo 2 ΓΓιμ	ядерный процессор	больше 2 ГГц, 1 Гб
	или аналогичный;	2,4 ГГц;	оперативной памяти;
	ОЗУ – 1 GB; простран-	1 Гб оперативной	2 Гб свободного мес-
	ство на жестком диске	памяти;	та на жестком диске;
	– 2 GB; разрешение	2 Гб свободного	
	экрана – 1280х1024;	места на жестком	
	качество цветопреда-	диске свободный	
	чи – True Color; видео-	разьем; USB,	
	карта с поддержкой;	Windows XP, 7, 8	
	Windows XP SP3 или Windows 7 Professional;		
	willdows / Flotessional;		

Окончание табл.

Номер	На	звание SCADA- систем	Ы
критерия	Trace Mode	MasterSCADA	Круг-2000
8.	до 64000 точек	Неограниченно	7 ступеней, от 60 до
		1	64000 точек ввода-
			вывода
9.	Многоязыковая под-	Русский	Русский
	держка		•
10.	Полноценная помощь	Русский	Русский
	на разных языках		
11.	Да, на процедурном	Имитационный режим	Есть
	языке Techno IL	с индивидуальным	
		выбором функций	
		имитации сигналов	
12.	Свыше 1000 графиче-	Число элементов на	Векторный и растро-
	ских изображений; свы-	мнемосхеме не огра-	вый режим, большое
	ше 600 анимационных	ничено, число мнемо-	количество примити-
	объектов; поддержи-	схем в проекте не ог-	вов отображений
	ваются слои. 3D Fast+	раничено, библиотеки	
	обеспечивает быструю	стандартных элемен-	
	загрузку мнемосхем в	тов содержат множе-	
	реальном времени	ство элементов	
13.	Тренды реального вре-	Текущие и истори-	Тренды реального
	мени и исторические не-	ческие, неограни-	времени, событийные
	ограниченной глубины	ченной глубины	тренды
14.	TRACE MODE	Интернет	Веб-Контроль
	DataCenter	клиент есть	C
	Интеграции с базами	MSSQL, Oracle,	Своя. Мастер созда-
15.	данных, ODBC, OPC,	Firebird, MySQL,	ния базы данных
	DDE. Встроен редак-	Interbase, Access	
	тор SQL-запросов Double ForceMPB+	Есті функция посоп	Danico Spanic IV Nova
	«горячее резервирова-	Есть функция резервирования контрол-	Разнообразных механизмов резервирования,
16.	ние»	леров	включая 100 % горяче-
	пис//	леров	
17.	MODE, DDE и OPC;	Adam, MFC,TCM52	го резервирования Неограниченное ко-
	драйверы к 2087 раз-	Teconic, TCM410,	личество драйверов
	личным устройствам	Wincon	устройств и редактор
	ввода/вывода	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	УСО
18.	Используется пять	Языки программи-	Используется свой
	языков программиро-	рования. ST (стан-	внутренний язык
	вания	дарт МЭК 61131 – 3),	Кругол
		С# (ФБ Скрипт)	r J
10	На 512 точек	На 500 точек	На 500 точек
19.	27 261 руб.	19600 руб.	30275 руб.
	1	1 - 1 -	1./

Анализ отечественных SCADA-систем применяемых в нефтегазовой отрасли показал, что рассмотренные системы сопоставимы по эксплуатационным, стоимостным и техническим характеристикам и удовлетворяют практически всем требованиям, предъявляемым в настоящее время к SCADA-системам. Выбор SCADA-систем вопрос сложный и неоднозначный, каждый должен решать его исходя из своих потребностей, уровня знаний и других факторов, причем одним из важнейших факторов, влияющих на популярность той или иной системы, является возможность получения технической поддержки и обучения. Хочется отметить, что SCADA-система «TraceMode» имеет специальные программы, участие в которых открывают массу возможностей, включая бесплатные обучающие курсы для преподавателей ВУЗов, и олимпиады для студентов, свободный доступ к учебной литературе и документации, бесплатные лицензии на использование продукта, бесплатную техподержку [3]. Все это позволяет сделать выбор в пользу продукта компании AdAstra для использования в учебном процессе в филиале Южно-Уральского государственного университета в г. Нижневартовске в рамках дисциплины по выбору «Компьютерные системы сбора, обработки измерительной информации в нефтегазовой отрасли» направления обучения 200100.62 «Приборостроение».

Библиографический список

- 1. Зверева, Е.А. Информационное сопровождение практик / Е.А. Зверева // Наука ЮУрГУ. Секции социально-гуманитарных наук: материалы 66-й науч. конф. / отв. за вып. С.Д. Ваулин; Юж.-Урал. гос. ун-т. Челябинск: Издательский центр ЮУрГУ, 2014. С. 1715–1720.
- 2. Общественный «Портал госзакупок». Федеральный закон N 44-Ф3 от 05.04.2013. URL: http://www.gov-zakupki.ru/zakon/44-fz-id126.
- 3. Сайт AdAstra. SCADA-система «Trace Mode». URL: http://www.adast-ra.ru.
- 4. Сайт НПФ «Круг». Промышленная автоматизация, АСУ ТП, АСКУЭ, SCADA, инжиниринг. URL: http://www.krug2000.ru.
- 5. Сайт НПФ «ИнСАТ». SCADA-система «MasterSCADA». URL: http://www.masterscada.ru.

<u>К содержанию</u>