Abstract:
В работе исследовано влияние параметров электролиза на состав и структуру
цинк-никелевых покрытий при электроосаждении их на медную подложку из слабокислого хлоридного электролита с соотношением Zn(II)/Ni(II), равным 1. Химический состав электролитов контролировался методом комплексонометрического титрования. Исследование фазового состава проводи-
ли с помощью рентгеновского дифрактометра Rigaku Ultima IV. Валовый состав определяли с помощью сканирующего электронного микроскопа JEOL JSM-6460LV с компьютерным контролем. Установлено, что увеличение плотности тока повышает скорость осаждения сплава. Показано, что повышение температуры приводит к возрастанию доли никеля в сплаве, увеличению скорости осаждения никеля. На скорость осаждения цинка повышение температуры не влияет. При этом при
температуре ниже 60 °С осаждение сплава носит аномальный характер, при более высоких температурах характер осаждения становится нормальным. Определена открытая и общая пористость покрытия, установлено, что открытая пористость отсутствует, общая пористость составляет около 50 %. The effect of electrolysis parameters on the composition and structure of zinc–nickel coatings during their electrodeposition on a copper substrate from a weakly acidic chloride electrolyte with
a Zn(II)/Ni(II) ratio of 1 was studied in this work. The chemical composition of the electrolytes was controlled by complexometric titration. The phase composition was studied using a Rigaku Ultima IV X-ray diffractometer. The gross composition was determined using a JEOL JSM-6460LV scanning electron microscope with computer control. It has been established that an increase in the current density increases
the deposition rate of the alloy. It is shown that an increase in temperature leads to an increase in the proportion of nickel in the alloy and an increase in the rate of nickel deposition. An increase in temperature does not affect the rate of zinc deposition. At the same time, at temperatures below 60 °C, the deposition of the alloy is anomalous; at higher temperatures, the deposition becomes normal. The open and total porosity
of the coating was determined, it was found that there is no open porosity, the total porosity is about 50%.
Description:
Штин Светлана Валентиновна, канд. хим. наук, доцент кафедры материаловедения и физико-химии материалов, Южно-Уральский государственный университет, Челябинск, Россия; shtinsv@susu.ru.
Полунин Данила Алексеевич, студент кафедры материаловедения и физико-химии материалов, Южно-Уральский государственный университет, Челябинск, Россия; polinin2000@mail.ru.
Цикин Артем Сергеевич, студент кафедры материаловедения и физико-химии материалов, Южно-Уральский государственный университет, Челябинск, Россия; artemvips@mail.ru.
Svetlana V. Shtin, Cand. Sci. (Chem.), Ass. Prof. of the Department of Materials Science and Physical Chemistry of Materials, South Ural State University, Chelyabinsk, Russia; shtinsv@susu.ru.
Danila A. Polunin, Student of the Department of Materials Science and Physical Chemistry of Materials, South Ural State University, Chelyabinsk, Russia; polinin2000@mail.ru.
Artem S. Tsikin, Student of the Department of Materials Science and Physical Chemistry of Materials, South Ural State University, Chelyabinsk, Russia; artemvips@mail.ru.