Abstract:
Целью исследования является развитие асимптотического метода пограничных функций для бисингулярно возмущенных задач. В работе доказана возможность применения обобщенного метода пограничных функций
к построению полного асимптотического разложения решения задачи Дирихле для бисингулярно возмущенного, линейного, неоднородного, эллиптического уравнения второго порядка с двумя независимыми переменными
в кольце с квадратичным ростом на границе. Построенный асимптотический ряд представляет собой ряд Пюйзо. Построенное разложение обосновано принципом максимума. The Dirichlet problem for elliptic equations with a small parameter in the highest derivatives takes a
unique place in mathematics. In general case it is impossible to build explicit solution to these problems,
which is why the researchers apply different asymptotic methods. The aim of the research is to develop
the asymptotic method of boundary functions for constructing complete asymptotic expansions of the
solutions to such problems. The proposed generalized method of boundary functions differs from the
matching method in the fact that the growing features of the outer expansion are actually removed from
it and with the help of the auxiliary asymptotic series are fully included in the internal expansions, and
differs from the classical method of boundary functions in the fact that the boundary functions decay in
power-mode nature and not exponentially. Using the proposed method, a complete asymptotic expansion
of the solution to the Dirichlet problem for bisingular perturbed linear inhomogeneous second-order
elliptic equations with two independent variables in the ring with quadratic growth on the boundary is
built. A built asymptotic series corresponds to the Puiseux series. The basic term of the asymptotic expansion
of the solution has a negative fractional degree of the small parameter, which is typical for bisingular
perturbed equations, or equations with turning points. The built expansion is justified by the
maximum principle.
Description:
Д.А. Турсунов1, У.З. Эркебаев2.
1 Уральский государственный педагогический университет, г. Екатеринбург,
Российская Федерация
2 Ошский государственный университет, г. Ош, Киргизия. D.A. Tursunov1, U.Z. Erkebaev2
1 Urals State Pedagogical University, Ekaterinburg, Russian Federation
2 Osh State University, Osh, Kyrgyzstan
E-mail: d_osh@rambler.ru