Problem in creating the Request

Message: null

Description: No details available.

Sender: org.dspace.app.xmlui.cocoon.servlet.multipart.DSpaceMultipartFilter

Source: Cocoon Servlet

request-uri

/xmlui/handle/0001.74/27009

cause

null

Сильная согласованность в задачах восстановления зависимостей по интервальным данным
DSpace Repository

Сильная согласованность в задачах восстановления зависимостей по интервальным данным

Show simple item record

dc.contributor.author Шарый, С.П.
dc.contributor.author Shary, S.P.
dc.date.accessioned 2020-02-25T08:06:47Z
dc.date.available 2020-02-25T08:06:47Z
dc.date.issued 2017
dc.identifier.citation Шарый, С.П. Сильная согласованность в задачах восстановления зависимостей по интервальным данным / С.П. Шарый // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. 2017. Т. 9, № 1. С. 39-48. DOI: 10.14529/mmph170105. Shary S.P. Strong compatability in data fitting problems with interval data. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics. 2017, vol. 9, no. 1, pp. 39-48. (in Russian). DOI: 10.14529/mmph170105 ru_RU
dc.identifier.issn 2075-809Х
dc.identifier.issn 2409-6547
dc.identifier.uri http://dspace.susu.ru/xmlui/handle/0001.74/27009
dc.description С.П. Шарый. Институт вычислительных технологий СО РАН, г. Новосибирск, Российская Федерация E-mail: shary@ict.nsc.ru. S.P. Shary Institute of Computational Technologies of SB RAS, Novosibirsk, Russian Federation E-mail: shary@ict.nsc.ru ru_RU
dc.description.abstract Для задачи восстановления зависимостей по данным с интервальной неопределённостью вводится понятие сильной согласованности данных и параметров. Даётся его содержательная интерпретация. Показывается, что получающаяся усиленная формулировка задачи сводится к исследованию непустоты и дальнейшему оцениванию так называемого допускового множества решений для интервальной системы уравнений, построенной по обрабатываемым данным. The data fitting problem is a popular and practically important problem in which a functional dependency between “input” and “output” variables is to be constructed from the given empirical data. Real-life data are almost always inaccurate, and we have to deal with the measurement uncertainty. Traditionally, when processing the measurement results, models of probability theory are used, which are not always adequate to the situations under study. An alternative way to describe data inaccuracy is to use methods of interval analysis, based on specifying interval bounds of the measurement results. Data fitting problems under interval uncertainty are being solved for about half a century. Most studies in this field rely on the concept of compatibility between parameters and measurement data in which any measurement result is a kind of a large point “inflated” to a box (rectangular parallelepiped with facets parallel to the coordinate axes). That the graph of the constructed function passes through such a “point” means a nonempty intersection of the graph with the box. However, in some problems, this natural concept turns out to be unsatisfactory. In this work, for the data fitting under interval uncertainty, we introduce the concept of strong compatibility between data and parameters. It is adequate to the situations when measurements of input and output variables are broken in time, and we strive to uniformly take into account the interval results of output measurements. The paper gives a practical interpretation of the new concept. It is shown that the modified formulation of the problem reduces to recognition and further estimation of the so-called tolerable solution set to interval systems of equations constructed from the processed data. ru_RU
dc.language.iso other ru_RU
dc.publisher Издательский центр ЮУрГУ ru_RU
dc.relation.ispartof Вестник ЮУрГУ. Серия Математика. Механика. Физика
dc.relation.ispartof Vestnik Ûžno-Ural’skogo gosudarstvennogo universiteta. Seriâ Matematika. Mehanika. Fizika
dc.relation.ispartof Bulletin of SUSU
dc.relation.ispartofseries Математика. Механика. Физика;Том 9
dc.subject УДК 519.22 ru_RU
dc.subject УДК 519.6 ru_RU
dc.subject задача восстановления зависимостей ru_RU
dc.subject согласование параметров и данных ru_RU
dc.subject сильное согласование ru_RU
dc.subject интервальная система уравнений ru_RU
dc.subject допусковое множество решений ru_RU
dc.subject data fitting problem ru_RU
dc.subject compatibility between data and parameters ru_RU
dc.subject strong compatibility ru_RU
dc.subject interval linear equation system ru_RU
dc.subject tolerable solution set ru_RU
dc.title Сильная согласованность в задачах восстановления зависимостей по интервальным данным ru_RU
dc.title.alternative Strong compatability in data fitting problems with interval data ru_RU
dc.type Article ru_RU
dc.identifier.doi DOI: 10.14529/mmph170105


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account