Abstract:
Изучена задача Шварца для 2-вектор-функций, аналитических по
Дуглису с матрицей J, имеющей разные собственные числа. Проведена
редукция задачи Шварца к равносильной граничной задаче для скалярного
функционального уравнения. Эта редукция применена для доказательства
трех теорем существования и единственности решений задачи Шварца в
областях, ограниченных контуром Ляпунова. The paper deals with the problem of existence and uniqueness of the Schwarz problem solution for
2-vector-functions, being analytic on Douglis, in regions bounded by the Lyapunov contour, and in
classes of functions that are Holder continuous. However, the matrix J should have different eigenvalues
λ, μ, and at least one eigenvector that is not multiple of the real one.
At the beginning of the paper, the inhomogeneous Schwarz problem with a boundary function ψ is
transformed. As a result of the performed reduction the Schwarz problem turns into an equivalent
boundary problem for an inhomogeneous scalar functional equation. It connects boundary values of λ-
and μ-holomorphic functions f, g, defined in the plane region D, with a certain boundary function φ,
which is constructed by ψ.
This functional equation for different matrices J is distinguished only by a complex coefficient 1,
which is calculated using the matrix J. In this case the following circular property is found: the Schwarz
problem is solvable or not simultaneously for all matrices, which coefficient module is equal. That’s
why without loss of generality 1 can be considered a real number. It’s proved that the studied functional
equation for cases l = 0 and |l| = 1 has a unique solution for any right side of φ. The matrices J having
complex conjugate eigenvectors and one real eigenvector correspond to these two cases. Therefore, for
these matrices the inhomogeneous Schwarz problem in case of any boundary function ψ has the unique
solution. We consider absolutely and irrespectively the case when the matrix J has complex conjugate
eigenvalues.
At the end of the paper it’s shown that in case of |l| = 5 the homogeneous (φ = 0) functional equation
has a nontrivial solution.
Description:
В.Г. Николаев
Новгородский государственный университет имени Ярослава Мудрого, Великий Новгород,
Российская Федерация
E-mail: vg14@inbox.ru. V.G. Nikolaev
Federal State-Funded Educational Institution of Higher Vocational Education “Yaroslav-the-Wise Novgorod
State University”, Velikiy Novgorod, Russian Federation
E-mail: vg14@inbox.ru