DSpace Repository

Термодинамический анализ реакций взаимодействия марганца, кремния, магния, кальция, алюминия с кислородом в борсодержащем расплаве на основе железа

Show simple item record

dc.contributor.author Михайлов, Г. Г.
dc.contributor.author Макровец, Л. А.
dc.contributor.author Смирнов, Л. А.
dc.contributor.author Mikhailov, G. G.
dc.contributor.author Makrovets, L. A.
dc.contributor.author Smirnov, L. A.
dc.date.accessioned 2016-06-09T05:53:08Z
dc.date.available 2016-06-09T05:53:08Z
dc.date.issued 2015
dc.identifier.citation Михайлов, Г. Г. Термодинамический анализ реакций взаимодействия марганца, кремния, магния, кальция, алюминия с кислородом в борсодержащем расплаве на основе железа / Г. Г. Михайлов, Л. А. Макровец, Л. А. Смирнов // Вестник ЮУрГУ. Серия Металлургия.- 2015.- Т. 15. № 2.- С. 5-12.- Библиогр.: с. 11 (5 назв.) ru_RU
dc.identifier.issn 1990-8482
dc.identifier.issn 2411-0906
dc.identifier.uri http://dspace.susu.ac.ru/xmlui/handle/0001.74/6611
dc.description Михайлов Геннадий Георгиевич, д-р техн. наук, профессор, заведующий кафедрой физической химии, Южно-Уральский государственный университет, г. Челябинск; mikhailovgg@susu.ac.ru. Макровец Лариса Александровна, инженер кафедры физической химии, Южно-Уральский государственный университет, г. Челябинск; makrovetcla@susu.ac.ru. Смирнов Леонид Андреевич, академик Российской Академии наук, д-р техн. наук, профессор, директор, Уральский институт металлов, г. Екатеринбург; sekretar@uim-stavan.ru. G.G. Mikhailov, South Ural State University, Chelyabinsk, Russian Federation, mikhailovgg@susu.ac.ru, L.A. Makrovets, South Ural State University, Chelyabinsk, Russian Federation, makrovetcla@susu.ac.ru, L.A. Smirnov, Ural Institute of Metals, Yekaterinburg, Russian Federation, sekretar@uim-stavan.ru ru_RU
dc.description.abstract Выполнен термодинамический анализ процессов взаимодействия бора, растворенного в жидкой стали, с компонентами металлического расплава: кислородом, алюминием, кальцием, магнием и углеродом. В работе, опираясь на результаты расчетов линий ликвидус для двойных диаграмм и поверхностей ликвидус для тройных оксидных диаграмм состояний с B2O3, разработана методика построения поверхностей растворимости компонентов в жидкой борсодержащей стали. Установлено, что марганец и крем- ний не способны блокировать окисление вводимого в сталь бора. В этом случае в основном бор при взаимодействии с кислородом, марганцем и кремнием образует жидкие оксидные (шлаковые) неметаллические включения. Кальций также не является эффективным защитником. Алюминий и магнийсодержащие лигатуры способны предотвратить окисление введенного в сталь бора и таким образом позволить стабилизировать технологию получения сталей, модифицированных бором. При тысячных долях процентов алюминия и магния исключается возможность взаимодействия растворенного в стали бора с оставшимся в стали кислородом. Для того чтобы сохранить в стали достаточное количество «эффективного бора», необходимо также разработать и эффективную систему деазотации стали за счет введения нитридообразующих элементов и вакуумирования. The thermodynamic analysis of the interaction of boron dissolved in liquid steel with components of metal melt, such as oxygen, aluminium, calcium, magnesium and carbon is carried out. The authors managed to develop a technique of drawing component solubility surfaces in liquid boron-bearing steel based on calculations of liquidus lines and surfaces for binary and ternary oxide phase diagrams with B2O3. It was established that manganese and silicon can not block oxidation of boron introduced into steel. In this case boron interacting with oxygen, manganese and silicon forms liquid oxide (slag) non-metallic inclusions. Calcium is not an effective protector of boron. Addition of alloys containing aluminium and magnesium can prevent oxidation of the introduced boron and thus enables to stabilize the production technology of boron-modified steels. With one thousandth of percent of aluminium and magnesium the possibility of boron dissolved in steel with retained oxygen is excluded. In order to retain a sufficient amount of “effective boron” in steel it is necessary to develop an effective system of denitration of steel by introducing nitride forming elements and vacuum degassing. ru_RU
dc.language.iso other ru_RU
dc.publisher Издательский центр ЮУрГУ ru_RU
dc.relation.ispartof Вестник ЮУрГУ. Серия Металлургия
dc.relation.ispartof Vestnik Ûžno-Ural’skogo gosudarstvennogo universiteta. Seriâ, Metallurgiâ
dc.relation.ispartof Bulletin of SUSU
dc.relation.ispartofseries Металлургия;Том 15
dc.subject УДК 669.017.3 ru_RU
dc.subject УДК 661.8'06 ru_RU
dc.subject УДК 544.015.3 ru_RU
dc.subject УДК 544.015.4 ru_RU
dc.subject ГРНТИ 31.15 ru_RU
dc.subject термодинамика ru_RU
dc.subject раскисление ru_RU
dc.subject рафинирование ru_RU
dc.subject бор ru_RU
dc.subject thermodynamics ru_RU
dc.subject deoxidation ru_RU
dc.subject refinement ru_RU
dc.subject boron ru_RU
dc.title Термодинамический анализ реакций взаимодействия марганца, кремния, магния, кальция, алюминия с кислородом в борсодержащем расплаве на основе железа ru_RU
dc.title.alternative Thermodynamic analysis of the coupling reaction of manganese, silicon, magnesium, calcium, aluminum with oxygen in the boron-containing melt based on iron ru_RU
dc.type Article ru_RU


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account