Abstract:
Методом теории функционала плотности при использовании приближения обобщенного градиента выполнено моделирование трех новых полиморфных разновидностей функционализированного гидроксильной группой графена, состоящего только из парных топологических дефектов 4-6-12. Моделирование слоев проведено для примитивных гексагональных элементарных ячеек с типами присоединения гидроксильной группы T1, T2, T3. Каждая из рассматриваемых элементарных ячеек содержала 36 атомов. В результате проведенных расчетов установлено, что углеродный каркас исходного слоя остается устойчивым при функционализации по типам T1 и T3, а функционализированный слой T2 претерпевает разрушение. Слоевая плотность в гидроксиграфеновых слоях L4-6-12 с типами присоединения T1 и T3 составляет 1,34 и 1,36 мг/м2, соответственно, которая меньше слоевой плотности для аналогичных фторографеновых слоев на 0,08-0,16 мг/м2. Энергии сублимации устойчивых слоев T1 и T3 со-ставили 18,16 и 17,37 эВ/(COH), соответственно. Для определения запрещенной зоны были рассчитаны плотности электронных состояний и зонные структуры. Величина ширины запрещенной зоны оказалась равной 3,33 эВ для слоя T1 и 1,93 эВ для слоя T3, что позволило отнести полученные слои к полупроводникам. Density functional theory in the generalized gradient approximation was used to model three new polymorphic varieties of graphene functionalized by the hydroxyl group, consisting only of paired topological defects 4-6-12. Layer modeling was carried out for primitive hexagonal elementary cells with the types of addition of the hydroxyl group T1, T2, T3. Each of the elementary cells contained 36 atoms. As a result of the calculations, it was established that the carbon frame of the initial layer remains stable during functionalization for the T1 and T3 types, while the functionalized layer T2 undergoes destruction. The layer density in hydroxygraphene layers L4-6-12 with attachment types T1 and T3 is 1,34 and 1,36 mg/m2, respectively. This is less than the layer density for similar fluorographene layers by 0,08-0,16 mg/m2. The sublimation energies of stable layers T1 and T3 were 18,16 and 17,37 eV/(COH), respectively. Densities of electronic states and band structures were calculated, in order to determine the band gaps. The value of the band gap width was determined as equal to 3.33 eV for the T1 layer and 1,93 eV for the T3 layer. This enabled the layers thus obtained to be identified as semiconduc-tors.
Description:
Беленков Максим Евгеньевич – аспирант кафедры радиофизики и электроники, Челябинский государственный университет, г. Челябинск, Российская Федерация, e-mail: me.belenkov@gmail.com
Грешняков Владимир Андреевич – кандидат физико-математических наук, старший преподаватель кафедры физики конденсированного состояния, Челябинский государственный универ-ситет, г. Челябинск, Российская Федерация.
Чернов Владимир Михайлович – доктор физико-математических наук, доцент, профессор кафедры радиофизики и электроники, Челябинский государственный университет, г. Челябинск, Российская Федерация. Belenkov Maxim Evgenyevich is Post-graduate Student, Department of Radiophysics and Electron-ics, Chelyabinsk State University, Chelyabinsk, Russian Federation, e-mail: me.belenkov@gmail.com
Greshnyakov Vladimir Andreevich is Cand. Sc. (Physics and Mathematics), Senior Lecturer of the Condensed Matter Physics Department, Chelyabinsk State University, Chelyabinsk, Russian Federation.
Chernov Vladimir Mikhailovich is Dr. Sc. (Physics and Mathematics), Associate Professor, Profes-sor of the Radiophysics and Electronics Department, Chelyabinsk State University, Chelyabinsk, Russian Federation.