Problem in creating the Request

Message: null

Description: No details available.

Sender: org.dspace.app.xmlui.cocoon.servlet.multipart.DSpaceMultipartFilter

Source: Cocoon Servlet

request-uri

/xmlui/handle/0001.74/26991

cause

null

Вырожденные уравнения Вольтерра типа свертки в банаховых пространствах и их приложения
DSpace Repository

Вырожденные уравнения Вольтерра типа свертки в банаховых пространствах и их приложения

Show simple item record

dc.contributor.author Орлов, С.С.
dc.contributor.author Orlov, S.S.
dc.date.accessioned 2020-02-20T07:58:57Z
dc.date.available 2020-02-20T07:58:57Z
dc.date.issued 2016
dc.identifier.citation Орлов, С.С. Вырожденные уравнения Вольтерра типа свертки в банаховых пространствах и их приложения / С.С. Орлов // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. 2016. Т. 8, № 3. С. 52-63. DOI: 10.14529/mmph160305. Orlov S.S. Degenerate Volterra equations of convolution type in Banach spaces and their applications. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics. 2016, vol. 8, no. 3, pp. 52-63 (in Russian). DOI: 10.14529/mmph160305 ru_RU
dc.identifier.issn 2075-809Х
dc.identifier.issn 2409-6547
dc.identifier.uri http://dspace.susu.ru/xmlui/handle/0001.74/26991
dc.description С.С. Орлов, Иркутский государственный университет, г. Иркутск, Российская Федерация E-mail: orlov_sergey@inbox.ru. S.S. Orlov, Irkutsk State University, Irkutsk, Russian Federation E-mail: orlov_sergey@inbox.ru ru_RU
dc.description.abstract Изучен вопрос однозначной разрешимости линейных интегральных и интегро-дифференциальных уравнений Вольтерра в банаховых пространствах с необратимым оператором в главной части. Операторнозначное ядро имеет специальный вид K(t, s) = g(t – s)A, где g = g(t) – числовая функция, A – линейный оператор. Именно в такой форме эти уравнения часто встречаются в приложениях. Для их исследования становится возможным применение структурной теории пучков двух линейных операторов, которая в настоящее время наиболее полно разработана Г.А. Свиридюком и его учениками. Еще одна особенность изучаемых в данной работе задач состоит в наличии у функции g = g(t) кратного нуля в точке t = 0. В предположении спектральной ограниченности оператора A относительно вырожденной главной части уравнений построены фундаментальные оператор-функции соответствующих интегральных и интегро-дифференциальных операторов в банаховых пространствах. На этой основе доказаны теоремы существования и единственности решений рассматриваемых задач в классе распределений с ограниченным слева носителем. Установлена зависимость порядка сингулярности обобщенных решений от кратности нуля интегрального ядра в начальной точке. Получены условия, при которых обобщенные решения совпадают с классическими. Теоремы, сформулированные для абстрактных уравнений, применены к исследованию содержательных начально-краевых задач, возникающих в физике плазмы и математической теории упругости. The article is devoted to the problem of unique solvability of linear integral and integral-differential Volterra equations in Banach spaces with irreversible operator in the main part. Operator-valued kernel has a special form, K(t, s) = g(t – s)A, where g = g(t) is a numeric function, and A is a linear operator. Abstract equations of this kind are very typical for applications. For the study of such equations it is possible to use structural stack theory of two linear operators, which has been developed by Professor G.A. Sviridyuk and his students. Another peculiarity of the studied problems is multiple zero of function g = g(t) at the point t = 0. Fundamental operator-functions of considered integral and integral-differential operators in Banach spaces are constructed under the assumption of relative spectrally boundness of operator A with respect to degenerated main part of equations. On this basis, theorems of unique existence of solutions in the class of distributions with left-bounded support are proved. The dependence between the order of singularity of generalized solutions and multiplicity of zero of integral kernel at the initial point is ascertained. Also we have obtained conditions under which generalized solutions are equal to the classical solutions. Theorems formulated for abstract equations are applied to the study of significant initial boundary value problems arising in plasma physics and mathematical theory of elasticity. ru_RU
dc.description.sponsorship Работа проводилась при финансовой поддержке Российского фонда фундаментальных исследований в рамках научного проекта № 16-31-00291 мол_а. ru_RU
dc.language.iso other ru_RU
dc.publisher Издательский центр ЮУрГУ ru_RU
dc.relation.ispartof Вестник ЮУрГУ. Серия Математика. Механика. Физика
dc.relation.ispartof Vestnik Ûžno-Ural’skogo gosudarstvennogo universiteta. Seriâ Matematika. Mehanika. Fizika
dc.relation.ispartof Bulletin of SUSU
dc.relation.ispartofseries Математика. Механика. Физика;Том 8
dc.subject УДК 517.968 ru_RU
dc.subject относительная спектральная ограниченность линейного оператора ru_RU
dc.subject распределение ru_RU
dc.subject фундаментальная оператор-функция ru_RU
dc.subject relative spectral boundedness of linear operator ru_RU
dc.subject distribution ru_RU
dc.subject fundamental operatorfunction ru_RU
dc.title Вырожденные уравнения Вольтерра типа свертки в банаховых пространствах и их приложения ru_RU
dc.title.alternative Degenerate Volterra equations of convolution type in Banach spaces and their applications ru_RU
dc.type Article ru_RU
dc.identifier.doi DOI: 10.14529/mmph160305


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account