dc.contributor.author |
Москвичева, П.О. |
|
dc.contributor.author |
Moskvicheva, P.O. |
|
dc.date.accessioned |
2020-02-26T06:39:50Z |
|
dc.date.available |
2020-02-26T06:39:50Z |
|
dc.date.issued |
2017 |
|
dc.identifier.citation |
Москвичева, П.О. Устойчивость эволюционного линейного уравнения соболевского типа / П.О. Москвичева // Вестник ЮУрГУ. Серия: Математика. Механика. Физика. 2017. Т. 9, № 3. С. 13-17. DOI: 10.14529/mmph170302. Moskvicheva P.O. Stability of the evolutionary linear Sobolev type equation. Bulletin of the South Ural State University. Series: Mathematics. Mechanics. Physics. 2017, vol. 9, no. 3, pp. 13-17. (in Russian). DOI: 10.14529/mmph170302 |
ru_RU |
dc.identifier.issn |
2075-809Х |
|
dc.identifier.issn |
2409-6547 |
|
dc.identifier.uri |
http://dspace.susu.ru/xmlui/handle/0001.74/27024 |
|
dc.description |
П.О. Москвичева,
Южно-Уральский государственный университет, г. Челябинск, Российская Федерация
E-mail: pelageia@bk.ru. P.O. Moskvicheva
South Ural State University, Chelyabinsk, Russian Federation
E-mail: pelageia@bk.ru |
ru_RU |
dc.description.abstract |
Уравнения соболевского типа являются частью обширной области неклассических уравнений математической физики. Они возникают при моделировании различных процессов в естественных и технических науках.
Исследуется устойчивость стационарного решения эволюционного
уравнения, возникшего в теории фильтрации и заданного в ограниченной
области. Для данного уравнения рассматривается начально-краевая задача.
Получены условия, при которых нулевое решение уравнения устойчиво. Sobolev type equations are a part of extensive area of non-classical equations of mathematical physics.
These are equations that are not solved respective to the highest derivative with respect to time. Research
of different problems for equations of the given type nowadays are very relevant, as such equations
appear during modeling of different processes in natural and engineering sciences. In this article,
stability of stationary solution of an evolutionary equation, which appeared in the filter theory and which
describes development of form of the filterable liquid’s free surface, is researched.
For this equation, an initial boundary-value problem in limited area is considered. The article consists
of an introduction, a list of references and two parts. In the first part, general concepts and theory
assertions concerning p-sectorial operators are given. After that, reduction of the considered problem to
the Cauchy problem for a Sobolev type abstract linear equation, by the means of selecting the corresponding
Banach spaces and linear operators, is carried out. Then the phase space of our problem is described.
In the second part, general concepts of the stability theory such as flow, stationary point of the flow,
and Lyapunov functional, are given. Theorems of stability and asymptotical stability of a stationary
point of the flow are given. In this article, the method of Lyapunov functional, modified for the case of
complete normalized spaces, is used. It should be noted, that modification of the method lies in transition
from incomplete normalized spaces to complete normalized spaces. As a result, the uniformity of
stability and asymptotic stability is lost, but the class of problems being solved gets considerably expanded.
The main result of the article are conditions formulated as a theorem of stability and asymptotic
stability of zero solution of the considered problem. |
ru_RU |
dc.language.iso |
other |
ru_RU |
dc.publisher |
Издательский центр ЮУрГУ |
ru_RU |
dc.relation.ispartof |
Вестник ЮУрГУ. Серия Математика. Механика. Физика |
|
dc.relation.ispartof |
Vestnik Ûžno-Ural’skogo gosudarstvennogo universiteta. Seriâ Matematika. Mehanika. Fizika |
|
dc.relation.ispartof |
Bulletin of SUSU |
|
dc.relation.ispartofseries |
Математика. Механика. Физика;Том 9 |
|
dc.subject |
УДК 517.9 |
ru_RU |
dc.subject |
уравнение соболевского типа |
ru_RU |
dc.subject |
относительно p-секториальные операторы |
ru_RU |
dc.subject |
устойчивость |
ru_RU |
dc.subject |
функционал Ляпунова |
ru_RU |
dc.subject |
Sobolev type equations |
ru_RU |
dc.subject |
relatively p-sectorial operators |
ru_RU |
dc.subject |
stability |
ru_RU |
dc.subject |
Lyapunov functional |
ru_RU |
dc.title |
Устойчивость эволюционного линейного уравнения соболевского типа |
ru_RU |
dc.title.alternative |
Stability of the evolutionary linear Sobolev type equation |
ru_RU |
dc.type |
Article |
ru_RU |
dc.identifier.doi |
DOI: 10.14529/mmph170302 |
|