Репозиторий Dspace

Рентгеноспектральный микроанализ поверхности карбида кремния после микроцарапания титана

Показать сокращенную информацию

dc.contributor.author Носенко, В. А.
dc.contributor.author Носенко, С. В.
dc.contributor.author Авилов, А. В.
dc.contributor.author Бахмат, В. И.
dc.contributor.author Nosenko, V. A.
dc.contributor.author Nosenko, S. V.
dc.contributor.author Avilov, A. V.
dc.contributor.author Bakhmat, V. I.
dc.date.accessioned 2016-06-29T04:07:34Z
dc.date.available 2016-06-29T04:07:34Z
dc.date.issued 2015
dc.identifier.citation Рентгеноспектральный микроанализ поверхности карбида кремния после микроцарапания титана / В. А. Носенко и др. // Вестник ЮУрГУ. Серия Машиностроение.- 2015.- Т. 15. № 1.- С. 69-79.- Библиогр.: с. 75-76 (26 назв.) ru_RU
dc.identifier.issn 1990-8504
dc.identifier.issn 2410-4744
dc.identifier.uri http://dspace.susu.ac.ru/xmlui/handle/0001.74/6827
dc.description Носенко Владимир Андреевич. Доктор технических наук, профессор, зав. кафедрой «Технология и оборудование машиностроительных производств», заместитель директора по учебной работе, Волжский политехнический институт (филиал) Волгоградского государственного технического университета, nosenko@volpi.ru. Носенко Сергей Владимирович. Кандидат технических наук, доцент кафедры «Технология и оборудование машиностроительных производств», Волжский политехнический институт (филиал) Волгоградского государственного технического университета, s.v.nosenko@gmail.com. Авилов Александр Викторович. Кандидат технических наук, доцент кафедры «Технология и оборудование машиностроительных производств», Волжский политехнический институт (филиал) Волгоградского государственного технического университета, avilov@volpi.ru. Бахмат Вера Ивановна. Лаборант кафедры «Технология и оборудование машиностроительных производств», Волжский политехнический институт (филиал) Волгоградского государственного технического университета, vto@volpi.ru. OF V.A. Nosenko, Volzhskiy Polytechnic Institute (Branch) of the Volgograd State Technical University, Volzhsky, Russian Federation, nosenko@volpi.ru, S.V. Nosenko, Volzhskiy Polytechnic Institute (Branch) of the Volgograd State Technical University, Volzhsky, Russian Federation, s.v.nosenko@gmail.com, A.V. Avilov, Volzhskiy Polytechnic Institute (Branch) of the Volgograd State Technical University, Volzhsky, Russian Federation, avilov@volpi.ru, V.I. Bakhmat, Volzhskiy Polytechnic Institute (Branch) of the Volgograd State Technical University, Volzhsky, Russian Federation, vto@volpi.ru ru_RU
dc.description.abstract Рассмотрена структура поверхности карбида кремния непосредственно после микроцарапания титана и после удаления налипшего металла травлением в растворе плавиковой кислоты. Исследования проведены на электронном микроскопе Versa 3D. Морфологию поверхности изучали при увеличении от 800 до 20000×. Химический состав определяли методом локального микрорентгеноспектрального анализа при съемке в отдельных точках и сканировании участков поверхности. Ускоряющее напряжение электронов возбуждения изменяли от 5 до 20 кВ. В нанослоях карбида кремния микрорентгеноспектральный анализ показал наличие пяти элементов: углерод, кремний, титан, азот и кислород. При 5 кВ, когда глубина зоны генерации рентгеновского характеристического излучения не превышает 270–320 нм, на участках поверхности карбида кремния без видимых следов налипшего металла концентрация титана достигает 3 % атом. Соотношение между атомами кремния и углерода свидетельствует о наличии избыточных атомов углерода. С увеличением ускоряющего напряжения до 15 кВ глубина слоя генерации рентгеновского характеристического излучения атомов титана может достигать 2000 нм. Поэтому с ростом U концентрация титана снижается, поскольку такое же количество титана, сконцентрированного в приповерхностном слое, теперь усредняется по значительно большему объему. При U = 15 кВ концентрация титана на нетравленой и травленной поверхностях составила соответственно 0,56 и 0,36 % атом. До травления количество атомов углерода в 1,7 раза больше чем атомов кремния. Наличие избыточного углерода объясняется присутствием достаточно большого количество углерода на поверхности материла. После травления, в результате снижения содержания атомов титана, кислорода и азота, общей тенденции к снижению атомов углерода концентрация атом кремния с(Si) увеличивается. В результате количественное соотношение между атомами углерода и кремния снижается до 1,4. Увеличение ускоряющего напряжения означает и увеличение объема основного материала, т. е. карбида кремния, находящегося в зоне генерации. С ростом U концентрация титана, азота, кислорода снижается, так как эти элементы находятся в основном на поверхности карбида кремния. Содержание атомов кремния и углерода, входящих в состав карбида кремния, будет возрастать практически пропорционально объему генерации. Поэтому с ростом U концентрация кремния должна увеличиваться, а углерода – снижаться. В действительности с увеличением U в диапазоне 5–15 кВ с(Si) на нетрав- леной поверхности возрастает более чем на 25 % и на 10 % после травления. Концентрация углерода имеет тенденцию к снижению. Только при ускоряющем напряжении 20 кВ атомные концентрации углерода и азота с учетом доверительного интервала на средние арифметические значения можно считать приблизительно одинаковыми. В данных интервалах U концентрация углерода снижается значимо, что подтверждает ранее высказанное предположение о тенденции снижения с(C) с увеличением U. The structure of a surface of carbide of silicon directly after a microscratching of titanium and after deleting the stuck metal by etching in solution of fluoric acid is considered. Research are conducted on an electron microscope of Versa 3D. The morphology of a surface was studied in case of increase from 800 to 20000×. The chemical composition was determined by method of local microx ray spectral analysis when shooting in separate points and scanning of sections of a surface. Acceleration voltage of electrons of excitation was changed from 5 to 20 kV. In silicon carbide nanolayers micro x-ray spectral analysis showed existence of five elements: carbon, silicon, titanium, nitrogen and oxygen. In case of 5 kV when depth of a zone of generation of X-ray characteristic radiation doesn't exceed 270–320 nanometers, on silicon carbide surface sections without visible traces of the stuck metal concentration of titanium reaches 3 % atom. The ratio between atoms of silicon and carbon testifies to existence of excess atoms of carbon. With increase in the layer of generation of X-ray characteristic radiation of atoms of titanium accelerating to 15 kV depth can reach 2000 nanometers. Therefore with growth U concentration of titanium decreases as the same amount of the titanium concentrated in a near-surface layer averages on much bigger volume now. In case of U = 15 kV concentration of titanium on not etched and etched surfaces made respectively 0,56 and 0,36 % atom. Before etching the amount of atoms of carbon is 1,7 times more than atoms of silicon. Availability of excess carbon is explained by presence rather big amount of carbon a surface swore. After etching, as a result of lowering of the content of atoms of titanium, oxygen and nitrogen, the general tendency to lowering of atoms of carbon with c(Si) increases. As a result the quantitative ratio between atoms of carbon and silicon decreases to 1,4. The increase in acceleration voltage means also increase in volume of the main material, that is carbide of the silicon which is in a generation zone. With growth U concentration of titanium, nitrogen, oxygen decreases as these elements are in the main on a silicon carbide surface. The content of the atoms of silicon and carbon which are a part of carbide of silicon will increase practically in proportion to generation volume. Therefore with growth U concentration of silicon shall increase, and carbon – to decrease. Actually with increase in U with c(Si) on not etched surface increases in the range of 5–15 kV more than for 25 % and for 10 % after etching. Concentration of carbon tends to lowering. Only in case of acceleration voltage of 20 kV atomic concentration of carbon and nitrogen taking into account a confidential interval on arithmetic averages of value can be read the approximately identical. In these intervals U concentration of carbon decreases significantly that confirms earlier suggested about a tendency of lowering c(C) with increase U. ru_RU
dc.language.iso other ru_RU
dc.publisher Издательский центр ЮУрГУ ru_RU
dc.relation.ispartof Вестник ЮУрГУ. Серия Машиностроение
dc.relation.ispartof Vestnik Ûžno-Ural’skogo gosudarstvennogo universiteta. Seriâ Mašinostroenie
dc.relation.ispartof Bulletin of SUSU
dc.relation.ispartofseries Машиностроение;Том 15
dc.subject УДК 669.017:543 ru_RU
dc.subject УДК 669.295 ru_RU
dc.subject ГРНТИ 53.81 ru_RU
dc.subject рентгеноспектральный микроанализ ru_RU
dc.subject титан ru_RU
dc.subject карбид кремния ru_RU
dc.subject химический состав ru_RU
dc.subject поверхность ru_RU
dc.subject микроцарапание ru_RU
dc.subject ускоряющее напряжение ru_RU
dc.subject X-ray spectral microanalysis ru_RU
dc.subject silicon carbide ru_RU
dc.subject titanium ru_RU
dc.subject chemical composition ru_RU
dc.subject surface ru_RU
dc.subject microscratching ru_RU
dc.subject acceleration voltage ru_RU
dc.title Рентгеноспектральный микроанализ поверхности карбида кремния после микроцарапания титана ru_RU
dc.title.alternative X-ray spectral microanalysis of the surface of carbide of silicon after the microscratching of titanium ru_RU
dc.type Article ru_RU


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в DSpace


Расширенный поиск

Просмотр

Моя учетная запись